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Features ?

Image credit: Andrew Ng
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Edge Detection 
n To explain the Convolutional NNs, we will look at 

the edge detection example first. 
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Edges

vertical edges

horizontal edges

Image credit: Andrew Ng
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EDGES
n Discontinuities in images are features that are 

often useful for initializing an image analysis 
procedure.

n Edges are important information for 
understanding an image; by removing “non-edge” 
data we also simplify the data.
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Edge Models

Lecture 2 - Filtering 6
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Characterizing Edges
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n An edge is a place of rapid change in the 
image intensity function
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image
intensity function

(along horizontal scanline) first derivative

edges correspond to
extrema of derivative
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Derivatives and Average
n Derivative: rate of change
n Examples:

n Speed is a rate of change of a distance, X=V.t
n Acceleration is a rate of change of speed, V=a.t
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Derivative
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Discrete Derivative
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Discrete Derivative / Finite Difference
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Example: Finite Difference
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Derivative Masks

Backward difference

Forward difference

Central difference
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Derivative in 2-D
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Derivative of Images
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Importance of neighborhood

n Both zebras and dalmatians have black and white pixels in 
similar numbers.

n The difference between the two is the characteristic 
appearance of small groups of pixels rather than individual 
pixel values.

Adapted from Pinar Duygulu, Bilkent University
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Outline
n We will discuss neighborhood operations that 

work with the values of the image pixels in the 
neighborhood.

n Spatial domain filtering
n Frequency domain filtering
n Image enhancement
n Finding patterns
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Spatial domain filtering
n Some neighborhood operations work with

n the values of the image pixels in the neighborhood, and
n the corresponding values of a subimage that has the 

same dimensions as the neighborhood.
n The subimage is called a filter (or mask, kernel, 

template, window).
n The values in a filter subimage are referred to as 

coefficients or weights, rather than pixels.
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Spatial domain filtering
n Operation: modify the pixels in an image based on 

some function of the pixels in their neighborhood.
n Simplest: linear filtering (replace each pixel by a 

linear combination of its neighbors).
n Linear spatial filtering is often referred to as 

“convolving an image with a filter”.



Linear filtering
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Spatial domain filtering
n Be careful about indices, image borders and 

padding during implementation.
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Border padding examples.

zero fixed/clamp periodic/wrap reflected/mirror

Adapted from CSE 455, U of Washington
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Smoothing spatial filters
n Often, an image is composed of

n some underlying ideal structure, which we want to 
detect and describe,

n together with some random noise or artifact, which we 
would like to remove.

n Smoothing filters are used for blurring and for 
noise reduction.

n Linear smoothing filters are also called averaging 
filters.
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Smoothing spatial filters
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Smoothing spatial filters
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1/9.( 180) = 20
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Smoothing spatial filters
n Common types of noise:

n Salt-and-pepper noise: 
contains random 
occurrences of black and 
white pixels.

n Impulse noise: contains 
random occurrences of 
white pixels.

n Gaussian noise: variations 
in intensity drawn from a 
Gaussian normal 
distribution.

Adapted from Linda Shapiro, U of Washington
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Smoothing spatial filters

Adapted from Gonzales and Woods
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Smoothing spatial filters

A weighted average that 
weighs pixels at its center 
much more strongly than 
its boundaries.

2D Gaussian filter
Adapted from Martial Hebert, CMU
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Smoothing spatial filters
n If σ is small: smoothing 

will have little effect.

n If σ is larger: neighboring 
pixels will have larger 
weights resulting in 
consensus of the 
neighbors.

n If σ is very large: details 
will disappear along with 
the noise.

Adapted from Martial Hebert, CMU



Smoothing spatial filters
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…

Width of the Gaussian kernel controls the amount of smoothing.

Adapted from K. Grauman
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Smoothing spatial filters

Result of blurring 
using a uniform 
local model.

Produces a set of 
narrow horizontal 
and vertical bars –
ringing effect.

Result of 
blurring using a 
Gaussian filter.

Adapted from David Forsyth, UC Berkeley



Smoothing spatial filters

30
Adapted from CSE 455, U of Washington

Gaussian versus mean filters
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Order-statistic filters
n Order-statistic filters are nonlinear spatial filters 

whose response is based on
n ordering (ranking) the pixels contained in the image 

area encompassed by the filter, and then
n replacing the value of the center pixel with the value 

determined by the ranking result.
n The best-known example is the median filter.
n It is particularly effective in the presence of 

impulse or salt-and-pepper noise, with 
considerably less blurring than linear smoothing 
filters.
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Order-statistic filters
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Order-statistic filters
10 11 10
9 10 11
10 9 10

1

10
10

2
9

0
9

0

9
9

9
9

0

1

99
10

10 11

10
1

11
11

11
11
1010

I

X X X
X

10

X

X

X
X

X

X

X

X

X

X
X

X

X
X
XX

O

10,9,11,9,99,11,11,10,10 9,9,10,10,10,11,11,11,99
sort

median

Adapted from Octavia Camps, Penn State



©2019, Selim Aksoy 34

Salt-and-pepper noise

Adapted from Linda Shapiro,
U of Washington
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Gaussian noise

Adapted from Linda Shapiro,
U of Washington



Spatially varying filters
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Bilateral filter: kernel depends on the local image content.
See the Szeliski book for the math.

*
*
*

input output

Adapted from Sylvian Paris



Spatially varying filters
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Compare to the result of using the same Gaussian kernel everywhere

Adapted from Sylvian Paris

*
*
*

input output
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Sharpening spatial filters
n Objective of sharpening is to highlight or enhance 

fine detail in an image.
n Since smoothing (averaging) is analogous to 

integration, sharpening can be accomplished by 
spatial differentiation.

n First-order derivative of 1D function f(x)
f(x+1) – f(x).

n Second-order derivative of 1D function f(x)
f(x+1) – 2f(x) + f(x-1).
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Sharpening spatial filters

Robert’s cross-gradient operators

Sobel gradient operators
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Sharpening spatial filters
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Sharpening spatial filters

Adapted from Gonzales and Woods
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Sharpening spatial filters

High-boost filtering
Adapted from Darrell and Freeman, MIT
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Sharpening spatial filters

Adapted from Darrell and Freeman, MIT


