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Features ?

Image credit: Andrew Ng




Edge Detection

= [0 explain the Convolutional NNs, we will look at
the edge detection example first.
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EDGES

= Discontinuities in images are features that are
often useful for initializing an image analysis
procedure.

= Edges are important information for
understanding an image; by removing “non-edge”
data we also simplify the data.



Edge Models
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Characterizing Edges

= An edge is a place of rapid change in the
image intensity function
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Derivatives and Average

= Derivative: rate of change

= Examples:
= Speed is a rate of change of a distance, X=V.t
= Acceleration is a rate of change of speed, V=a.t



Derivative

af J ()~ f(x—Ax)

E — hmAx—)O Ax

=f'(x)= [,

Example: y=x’+x"

d_y = 2x+4x°
dx



Discrete Derivative

df J(x)— f(x—Ax)

P lm,, . = f'(x)
LR S

X 1
df

i J(xX)=f(x=D)=f"(x)
X



Discrete Derivative / Finite Difference

df = f(x)— f(x-D=f"(x) Backward difference
df = f (x) f (X + 1) f (x) Forward difference
df

—= f(x+D)—f(x-1)= f (x) Central difference
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Example: Finite Difference

f(x)=10 15 10 10 25 20 20 20

117 117 117 117 1 F1

filx)=0 5 =5*0 *15 =50 *0

Derivative Masks

Backward difference [-1 1]
Forward difference 1 -1
Central difference [(1 0 1]
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Derivative in 2-D

Image Axis
Image Axis 2
Given function f()(:, y)
O (x,) |
Gradient vector Vi(x,y)= ﬁf(ﬁ)? )= {fx}
>V /,
R
Gradient magnitude ‘Vf(xa J’)‘ = 1+ fy2
0 =tan" L

Gradient direction
y



Derivative of Images

| -1 0 1 | 1 1 1
Derivative masks (filters): fx:>§ -1 0 1 fy:>§ 0O 0 O

-1 0 1

10 |10 20 20| 0 0 0 0 O]
10 |10 20 20| 20 0 [10]]10] 0 o0
I=|10 {10 20 20 I,=/0 10 10 0 0
10 10 20 20 0 10 10 0 0
10 10 20 20 0 0 0 0 0]




Importance of neighborhood

= Both zebras and dalmatians have black and white pixels in
similar numbers.

= The difference between the two is the characteristic
appearance of small groups of pixels rather than individual
pixel values.
Adapted from Pinar Duygulu, Bilkent University
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Outline

We will discuss neighborhood operations that
work with the values of the image pixels in the
neighborhood.

Spatial domain filtering
Frequency domain filtering
Image enhancement
Finding patterns
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Spatial domain filtering

= Some neighborhood operations work with
» the values of the image pixels in the neighborhood, and

= the corresponding values of a subimage that has the
same dimensions as the neighborhood.

= The subimage is called a filter (or mask, kernel,
template, window).

= The values in a filter subimage are referred to as
coefficients or weights, rather than pixels.
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Spatial domain filtering

= Operation: modify the pixels in an image based on
some function of the pixels in their neighborhood.

= Simplest: linear filtering (replace each pixel by a
linear combination of its neighbors).

= Linear spatial filtering is often referred to as
“convolving an image with a filter”.
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Linear filtering

g [m,n] f [m,n]
> >

For a linear spatially invariant system

flm,n]=g®h=>Y glm—k,n—Ihk,I]

m=01 2 ...

163[168|188|196|206(202]|206|207 ?

180184 |206|219]|202(200]195]|193 <:> ?

189(193 214|216

191(201(217|220

195(205(216|222

199(203(223|228

g[m,n]

19



Spatial domain filtering

= Be careful about indices, image borders and
padding during implementation.

Border padding examples.

Adapted from CSE 455, U of Washington
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Smoothing spatial filters

= Often, an image is composed of

= some underlying ideal structure, which we want to
detect and describe,

» together with some random noise or artifact, which we
would like to remove.

= Smoothing filters are used for blurring and for
noise reduction.

= Linear smoothing filters are also called averaging
filters.
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Smoothing spatial filters

101110/ 0 | 0 |1 X | X|X!X|X|X
910111101 x |10 X
10/ 9 10/ 0 | 2 |1 o |x|| X
11/10] 9/10| 9 |11 X | | X
9/l10[11] 9 [99/11 F X || X
1019 | 9]11]10/10] [, T X |[X | X[ X | X | X

ol 111

1|11

1/9.(10x1 + 11x1 + 10x1 + 9x1 + 10x1 + 11x1 + 10x1 + 9x1 + 10x1) =
1/9.(90) = 10

Adapted from Octavia Camps, Penn State
22



Smoothing spatial filters

10/ 11]10/ 0 | 0 |1
9l10/11] 1] 01
10/ 9 |10/ 0| 2 |1
11/10| 9410| 9 [11

X | X |[X|X|X]|X

X X

0 | X X

X X

F X BREER

T XX x:_xzfx__><|
11
11

1/9.(10x1 + 9x1 + 11x1 + 9x1 + 99x1 + 11x1 + 11x}'+ 10x1 + 10x1) =

1/9.( 180) = 20

Adapted from Octavia Camps, Penn State
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Smoothing spatial filters

= Common types of noise:

» Salt-and-pepper noise:
contains random
occurrences of black and
white pixels.

= Impulse noise: contains
random occurrences of
white pixels.

= (Gaussian noise: variations
in intensity drawn from a
Gaussian normal
distribution.

Adapted from Linda Shapiro, U of Washington Impulse noise | | Caussian noise
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Smoothing spatial filters

a4 ihie

FIGURE 3.36 (a) Image from the Hubble Space Telescope. (b) Image processed by a 15 X 15 averaging mask.
(¢) Result of thresholding (b). (Original image courtesy of NASA.)

Adapted from Gonzales and Woods
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Smoothing spatial filters

003

anz ...

107 10

2D Gaussian filter

| , l (2% +y°)
Gylx,y) = - exp (_ ( .+')y . )

2o -

A weighted average that
weighs pixels at its center
much more strongly than
its boundaries.

Adapted from Martial Hebert, CMU
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Smoothing spatial filters

= If ois small: smoothing
will have little effect.

= If ois larger: neighboring
pixels will have larger
weights resulting in
consensus of the
neighbors.

= If ois very large: details
will disappear along with
the noise.
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Adapted from Martial Hebert, CMU
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Smoothing spatial filters

0 10 20 30 0 10 20 30

Width of the Gaussian kernel controls the amount of smoothing.

Adapted from K. Grauman
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Smoothing spatial filters

Result of blurring
using a uniform
local model.

Result of
blurring using a

Gaussian filter.
Produces a set of

narrow horizontal
and vertical bars —
ringing effect.

- Adapted from David Forsyth, UC Berkeley
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Smoothing spatial filters

Gaussian versus mean filters

Adapted from CSE 455, U of Washington
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Order-statistic filters

= Order-statistic filters are nonlinear spatial filters
whose response is based on

= ordering (ranking) the pixels contained in the image
area encompassed by the filter, and then

» replacing the value of the center pixel with the value
determined by the ranking result.

= The best-known example is the median filter.

= It is particularly effective in the presence of
impulse or salt-and-pepper noise, with

considerably less blurring than linear smoothing
filters.
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Order-statistic filters

10|11 (10! 0 | O |1 X | X X! X|X|X
910|111 1|01 x [10 X
10/ 9 10/ 0 | 2 |1 o |x| | X
11(10| 9[10| 9 |11 X| | X
9 [10|11| 9 |99]11 X| | X
0//9 | 9|11/1010 X | x| X[ x[x|x

median

sort
10,11,109,1011,109,10 ——  9,9,10,10(10)10,10,11,11

Adapted from Octavia Camps, Penn State
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Order-statistic filters
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Adapted from Octavia Camps, Penn State
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Salt-and-pepper noise

3x3

Tx7

Adapted from Linda Shapiro,
U of Washington
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Gaussian Median
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Adapted from Linda Shapiro,

U of Washington
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Spatially varying filters

- El*
1B}
B

Bilateral filter: kernel depends on the local image content.
See the Szeliski book for the math.

output

Adapted from Sylvian Paris
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Spatially varying filters

output

Compare to the result of using the same Gaussian kernel everywhere

Adapted from Sylvian Paris
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Sharpening spatial filters

Objective of sharpening is to highlight or enhance
fine detail in an image.

Since smoothing (averaging) is analogous to
integration, sharpening can be accomplished by
spatial differentiation.

First-order derivative of 1D function f(x)
f(x+1) — f(x).

Second-order derivative of 1D function f(x)
f(x+1) — 2f(x) + f(x-1).
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Sharpening spatial filters

e For a function f(x,y), the gradient at (x,y) is defined

as

Vf:{

af of 1"

where i1ts magnitude can be used to implement first-

order derivatives.

-1

0

0

0

1

Robert’s cross-gradient operators

Sobel gradient operators
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Sharpening spatial filters

e Laplacian of a function (image) f(x,y) of two variables

r and y

Vf =

O°f  Of

Ox?
IS a second-order derivative operator.

0 1 0 1 1 1
1 —4 1 1 -8 1
0 1 0 1 1 1
0 -1 0 -1 -1 -1

-1 4 -1 -1 8 -1
0 -1 0 -1 -1 -1

ab
cd

FIGURE 3.39

(a) Filter mask
used to
implement the
digital Laplacian,
as defined in

Eq. (3.7-4).

(b) Mask used to
implement an
extension of this
equation that
includes the
diagonal
neighbors. (¢) and
(d) Two other
implementations
of the Laplacian.
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Sharpening spatial filters

ab

cid

FIGURE 3.40

(a) Image of the
North Pole of the
moon.

(b) Laplacian-
filtered image.
(¢) Laplacian
image scaled for
display purposes.
(d) Image
enhanced by
using Eq. (3.7-5).
(Original image
courtesy of

NASA))

Adapted from Gonzales and Woods




Sharpening spatial filters

2.0
I
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original e Sharpened

(differences are
accentuated; constant
areas are left untouched).

High-boost filtering

Adapted from Darrell and Freeman, MIT
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Sharpening spatial filters

before after

Adapted from Darrell and Freeman, MIT
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