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Fourier theory

= The Fourier theory 0
shows how most real L g
functions can be
represented in terms
of a basis of sinusoids.

= The building block:
s Asin(wx + ©)

= Add enough of them
to get any signal you
want.

Adapted from Alexei Efros, CMU



Fourier theory

= The Fourier theory
shows how most real
functions can be
represented in terms
of a basis of sinusoids.

= The building block:
s Asin(wx + @)

= Add enough of them
to get any signal you
want.

f(target)=
f1+ f2+ f3...+ fn+...

Adapted from Alexei Efros, CMU




Fourier transform

e The Fourier transform, F( ), of a single variable,
continuous function, f(x), is defined by

/ f —jQ’ﬂ'uI dr.

e Given F'(u), we can obtain f(x) using the inverse
Fourier transform

flz) = / F(u) ™ du.
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Fourier transform

e The discrete Fourier transform (DFT), F'(u), of a discrete function
of one variable, f(x), x =0,1,2,..., M — 1, is defined by

M—1
F(u) = 1 i > —j2mux /M
() =77 3 flr)e
T 2=0

foru=0,1,2,...,. M — 1.

e Given F'(u), we can obtain the original function back using the

inverse DFT
M—1
f(z) = Z F(u) pd2mux /M
u=0

forx =0,1,2,.... M — 1.



Fourier transform

e [hese formulas can be extended for functions of two
variables.

e Fourier transform:

F(u,v) = / / Flz,y) e 2 watvy) qo gy,

e Inverse Fourier transform:

33 y / / u U €J2/((111—|—ll/ du d’U



Fourier transform

e Discrete Fourier transform:
M—1N—1

—J2/t (ux /M~+vy/N)
AUV> 2 wy) e

r=0 y=0
foru=0,1,2.... M—1, v=0,1,2,..., N — 1.

e Inverse discrete Fourier transform:
M—1N—1

Qj y 5 ‘ 5 F U U 6"]2“ ux [M-+vy/N)

quO
for v =0,1,2,....M—1,y=0,1,2,....,N — 1.

F(u,v) =




Fourier transform

F'(u,v) can also be expressed in polar coordinates as
Fu,0) = | F(u, 0)] e
where
( ‘ 1/2
F(u,0)] = (RHF(w,0)} + SHF(u,0)})

is called the magnitude or spectrum of the Fourier transform, and

S F ()
(u, v) = tan™! (%{F(u,@)})

is called the phase angle or phase spectrum.

R{F(u,v)} and S{F'(u,v)} are the real and imaginary parts of
F'(u,v), respectively.



Fourier transform

e [he spectrum need not be interpreted as an image, but rather as a
2D display of the power in the original image versus the frequency
components u and v.

e The value F'(0,0) is the average of f(z,vy).

e Fourier transform is conjugate symmetric (F'(u,v) = F*(—u, —v))
and its spectrum is symmetric about the origin (|F'(u,v)
|F(—u, —v)|) (when f(x,y) is real).

e Usually the input image function is multiplied by (—1)*¥ prior to
computing the Fourier transform so that

31f (2, w) (~1)"] = F(u — M/2,v — N/2).

The origin of the Fourier transform is located at v = M /2 and
v=N/2.




Fourier transform - matlab

f(x) \F(u)|
F AK F
M
K points
77 X Il
F——"—""M points — ' F——"M points —

A=1; K=10; M=100;

t=[ones(1,K)*A zeros(1,M-K)];

subplot(3,1,1); bar(t); ylim([0 2xA])

subplot(3,1,2); bar(abs(fftshift(fft(t)))); ylim([0 A*K+1])

subplot(3,1,3); bar(real(fftshift(fft(t)))); ylim([-A*K+1 A*K+.1])

Adapted from Gonzales and Woods
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Fourier transform

To get some sense of what basis
elements look like, we plot a basis
element --- or rather, its real part ---

as a function of x,y for some fixed u, v.
We get a function that is constant when
(ux+vy) is constant. The magnitude of
the vector (u, v) gives a frequency, and
its direction gives an orientation. The
function is a sinusoid with this frequency
along the direction, and constant
perpendicular to the direction.

A%

e—7zi(ux+vy)

[ ]
u

em’(ux+vy)

Adapted from Antonio Torralba
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Fourier transform

Here u and v are /
larger than in the
previous slide.
A%
e—7zi(4x+vy)
* u
'eiz'i Xy ) l

Adapted from Antonio Torralba
12

N




Fourier t




Fourier transform

Figure 5.42: Four images (above) and their power spectrums (below). The power spectrum

of the brick texture shows energy in many sinusoids of many frequencies, but the dominant
direction is perpendicular to the 6 dark seams running about 45 degrees with the X-axis.

There is noticable energy at 0 degrees with the X axis, due to the several short vertical
seams. The power spectrum of the building shows high frequency energy in waves along

the X-direction and the Y-direction. The third image is an aerial image of an orchard:
the power spectrum shows the rows and columns of the orchard and also the “diagnonal
rows” . The far right image, taken from a phone book, shows high frequency power at about
60° with the X-axis, which represents the texture in the lines of text. Energy is spread
more broadly in the perpendicular direction also in order to model the characters and their

spacing. Adapted from Shapiro and Stockman
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Convolution theorem

e The discrete convolution of two functions f(x,vy) and
h(x,y) of size M x N is defined as
M—1N-1

f(x,y)*h(x,y) ]\IN Y Y fim,n) h(x—m,y—n).

m=0 n=0

e This is equivalent to the correlation of f(x,y) with
h(xz,y) flipped about the origin.

e Convolution theorem:
f(x,y) xh(z,y) & Fu,v) H(u,v)
f(x,y) h(x,y) & F(u,v) x H(u,v)

where “<" indicates a Fourier transform pair.
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Frequency domain filtering

Filter image f(z,y) with mask h(z,y)

(1) Fourier transform the image f(x,y) to obtain its frequency rep. F(u,v).

(2) Fourier transform the mask h(z, y) to obtain its frequency rep. H(u, v)

(3) multiply F'(u,v) and H(u,v) pointwise to obtain F'{u,v)

(4) apply the inverse Fourier transform to £'(u, v) to obtain the filtered image f'(x, y).

Algorithm 3: Filtering image f(z,y) with mask h(x, y) using the Fourier transform

Frequency domain filtering operation

Fourier Filter Inverse
[ function [ > Fourier
transform .
H(u.v) transform
Flu,v) H(u,v)F(u.v)

Pre- Post-
processing, processing
flx,y) g(x.y)

Input Enhanced
image image
FIGURE 4.5 Basic steps for filtering in the frequency domain. Adapted from Shapiro and Stockman,

and Gonzales and Woods



Frequency domain filtering

H(u) H(u) ab
4 4 G il
FIGURE 4.9

(a) Gaussian
frequency domain
lowpass filter.

(b) Gaussian
frequency domain
highpass filter.

(c) Corresponding
lowpass spatial
filter.

(d) Corresponding
highpass spatial
filter. The masks

h(x) shown are used in
i Chapter 3 for
lowpass and
e highpass filtering.
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Frequency domain filtering

;7 !
-
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Adapted from Alexei Efros, CMU



Template matching

Correlation can also be used for matching.

If we want to determine whether an image f
contains a particular object, we let h be that
object (also called a template) and compute the
correlation between f and h.

If there is @ match, the correlation will be
maximum at the location where h finds a
correspondence in f.

Preprocessing such as scaling and alignment is
necessary in most practical applications.

19



Face detection using template matching: detected faces.
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Resizing images

How can we generate a
half-sized version of a
large image?

Adapted from Steve Seitz, U of Washington
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Resizing images

e R
- o i -
SRR R,

N Lo ‘ib ._."

Throw away every other row and column to create
a 1/2 size image (also called sub-sampling).

Adapted from Steve Seitz, U of Washington
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Resizing images

1/2 1/4 (2x zoom) 1/8 (4x zoom)
Does this look nice?

Adapted from Steve Seitz, U of Washington
23




Resizing images

= We cannot shrink an image by simply taking every k'th pixel.
= Solution: smooth the image, then sub-sample.

> Gaussian 1/8
Gaussian 1/4

Adapted from Steve Seitz, U of Washington
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Resizing images

Gaussian 1/2 Gaussian 1/4 Gaussian 1/8
(2x zoom) (4x zoom)

Adapted from Steve Seitz, U of Washington
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Sampling and aliasing

= Errors appear if we do not sample properly.

= Common phenomenon:

= High spatial frequency components of the image appear
as low spatial frequency components.

= Examples:
= Wagon wheels rolling the wrong way in movies.
= Checkerboards misrepresented in ray tracing.
» Striped shirts look funny on color television.
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Sampling and aliasing

Moire patterns in real-world images. Here are comparison images by Dave Etchells of Imaging Resource using
the Canon D60 (with an antialias filter) and the Sigma SD-9 (which has no antialias filter). The bands below the fur
in the image at right are the kinds of artifacts that appear in images when no antialias filter is used. Sigma chose
to eliminate the filter to get more sharpness, but the resulting apparent detail may or may not reflect features in

the image.

Adapted from Ali Farhadi 57



Gaussian pyramids

Ix1 I\ Level 0 (apex) . b
2x2 TLevel 1
N FIGURE 7.2 (a) A
4% 4 Level 2 pyramidal image
, e structure and
|| . b) system block

diagram for

N2 X N2/ . .
creating 1t.

/

TevelJ — 1

™

N XNy Level J (base)

Downsampler
Approximation Level j - 1
filter 2* T approximation
2
f Upsampler
Interpolation
filter
Prediction
. Level j
. Levelj —& prediction
input image residual

Adapted from Gonzales and Woods
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Gaussian pyramids

Low resolution m 04 = (G * gaussian) \ )

&

down-sam )]

0 Vilc.
&2mp).

b lg_r \

(Jl = (UO gau&wan) v 2

High resolution

Irant & Basri

Adapted from Michael Black, Brown University
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