
Filtering – Part II

Sedat OZER
Department of Computer Engineering

Bilkent University
sedat@cs.bilkent.edu.tr



2

Fourier theory
n The Fourier theory 

shows how most real 
functions can be 
represented in terms 
of a basis of sinusoids.

n The building block:
n A sin( ωx + Φ )

n Add enough of them 
to get any signal you 
want.

Adapted from Alexei Efros, CMU
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Fourier transform - matlab

Adapted from Gonzales and Woods

A=1; K=10; M=100; 
t=[ones(1,K)*A zeros(1,M-K)]; 
subplot(3,1,1); bar(t); ylim([0 2*A])
subplot(3,1,2); bar(abs(fftshift(fft(t)))); ylim([0 A*K+1])
% Matlab uses DFT formulation without normalization by M.
subplot(3,1,3); bar(real(fftshift(fft(t)))); ylim([-A*K+1 A*K+1])



Fourier transform
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To get some sense of what basis 
elements look like, we plot a basis 
element --- or rather, its real part ---
as a function of x,y for some fixed u, v. 
We get a function that is constant when 
(ux+vy) is constant. The magnitude of 
the vector (u, v) gives a frequency, and 
its direction gives an orientation. The 
function is a sinusoid with this frequency 
along the direction, and constant 
perpendicular to the direction. 
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Adapted from Antonio Torralba



Fourier transform
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Adapted from Antonio Torralba

Here u and v are 
larger than in the 
previous slide.
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Fourier transform
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Adapted from Antonio Torralba

And larger still...
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Fourier transform

Adapted from Shapiro and Stockman
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Convolution theorem
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Frequency domain filtering

Adapted from Shapiro and Stockman,
and Gonzales and Woods
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Frequency domain filtering
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Frequency domain filtering
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Adapted from Alexei Efros, CMU
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Template matching
n Correlation can also be used for matching.
n If we want to determine whether an image f 

contains a particular object, we let h be that 
object (also called a template) and compute the 
correlation between f and h.

n If there is a match, the correlation will be 
maximum at the location where h finds a 
correspondence in f.

n Preprocessing such as scaling and alignment is 
necessary in most practical applications.
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Template matching

Face detection using template matching: detected faces.
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Resizing images

How can we generate a 
half-sized version of a 
large image?

Adapted from Steve Seitz, U of Washington
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Resizing images

Throw away every other row and column to create 
a 1/2 size image (also called sub-sampling).

1/4
1/8

Adapted from Steve Seitz, U of Washington
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Resizing images

Does this look nice?
1/4 (2x zoom) 1/8 (4x zoom)1/2

Adapted from Steve Seitz, U of Washington
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Resizing images
n We cannot shrink an image by simply taking every k’th pixel.
n Solution: smooth the image, then sub-sample.

Gaussian 1/4
Gaussian 1/8

Gaussian 1/2 Adapted from Steve Seitz, U of Washington



25

Resizing images

Gaussian 1/4 
(2x zoom)

Gaussian 1/8 
(4x zoom)

Gaussian 1/2

Adapted from Steve Seitz, U of Washington
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Sampling and aliasing
n Errors appear if we do not sample properly.
n Common phenomenon:

n High spatial frequency components of the image appear 
as low spatial frequency components.

n Examples:
n Wagon wheels rolling the wrong way in movies.
n Checkerboards misrepresented in ray tracing.
n Striped shirts look funny on color television.
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Sampling and aliasing

Adapted from Ali Farhadi
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Gaussian pyramids

Adapted from Gonzales and Woods
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Gaussian pyramids

Adapted from Michael Black, Brown University


