
Edge Detection

Sedat Ozer
Department of Computer Engineering

Bilkent University
sedat@cs.bilkent.edu.tr



ANNOUNCEMENT:
Paper Presentations

n Groups will present their chosen papers on April 22 or on April 24. 
n Each group will be assigned to one of those two days randomly. 

n Each group must submit their presentation slides by April 21 
midnight.

n Each group is assigned a time slot of 15 minutes.
n After 15 minutes, you will receive a penalty for going over the time.
n Finish your slides in 13-14 minutes and give one or two minutes for potential 

questions. Rehearse a couple times before presenting your paper.
n Each group will decide on who to present the paper. 

n It is not necessary that all members should present a portion of the paper, 
n however, each member is responsible with knowing all the material in their slides.
n All the group members can can asked random questions about the paper.

n See the course website for organizing your paper presentations (under 
paper presentations section).

n Check the email that you were sent for more details.
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Edge detection
n Edge detection is the process of finding 

meaningful transitions in an image.
n The points where sharp changes in the brightness 

occur typically form the border between different 
objects or scene parts.

n Further processing of edges into lines, curves and 
circular arcs result in useful features for matching 
and recognition.

n Initial stages of mammalian vision systems also 
involve detection of edges and local features.
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Edge detection
n Sharp changes in the image brightness occur at:

n Object boundaries
n A light object may lie on a dark background or a dark object 

may lie on a light background.
n Reflectance changes

n May have quite different
characteristics – zebras
have stripes, and leopards
have spots.

n Cast shadows
n Sharp changes in surface

orientation
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Edge models
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Difference operators for 2D
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Difference operators for 2D
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Difference operators for 2D

Adapted from Gonzales and Woods
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Difference operators for 2D
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Difference operators under noise
Solution is to smooth first:

Adapted from Steve Seitz
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Difference operators under noise
Differentiation property of convolution:

Adapted from Steve Seitz
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Difference operators under noise
Consider:

Adapted from Steve Seitz

Laplacian of Gaussian
operator



Edge detection filters for 2D
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Laplacian of Gaussian

Gaussian derivative of Gaussian

Adapted from Steve Seitz, U of Washington
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Difference operators for 2D
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Difference operators for 2D
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Edge detection
n Three fundamental steps in edge detection:

1. Image smoothing: to reduce the effects of 
noise.

2. Detection of edge points: to find all image 
points that are potential candidates to become 
edge points.

3. Edge localization: to select from the candidate 
edge points only the points that are true 
members of an edge.
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Canny edge detector
n The Canny operator gives single-pixel-wide 

images with good continuation between adjacent 
pixels.

n It is the most widely used edge operator today; 
no one has done better since it came out in the 
late 80s. Many implementations are available.

n It is very sensitive to its parameters, which need 
to be adjusted for different application domains.
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Canny edge detector
n The Canny operator gives single-pixel-wide 

images with good continuation between adjacent 
pixels.

n It is the most widely used edge operator 
today; Many implementations are available.

n It is very sensitive to its parameters, which need 
to be adjusted for different application domains.



Designing an edge “detector”
• Criteria for an “optimal” edge detector:

n Good detection: the optimal detector must minimize the 
probability of false positives (detecting spurious edges caused by 
noise), as well as that of false negatives (missing real edges)

n Good localization: the edges detected must be as close as possible 
to the true edges

n Single response: the detector must return one point only for each 
true edge point; that is, minimize the number of local maxima around 
the true edge

Source: L. Fei-Fei
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Canny edge detector
1. Smooth the image with a Gaussian filter with 

spread σ.
2. Compute gradient magnitude and direction at 

each pixel of the smoothed image.
3. Zero out any pixel response less than or equal to 

the two neighboring pixels on either side of it, 
along the direction of the gradient (non-maxima 
suppression).

4. Track high-magnitude contours using 
thresholding (hysteresis thresholding).

5. Keep only pixels along these contours, so weak 
little segments go away.

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986. 



Canny edge detector
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Original image (Lena)
Adapted from Steve Seitz, U of Washington



Canny edge detector
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Adapted from Steve Seitz, U of Washington

Magnitude of the gradient



Canny edge detector
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Adapted from Steve Seitz, U of Washington

Thresholding



Canny edge detector

24
Adapted from Steve Seitz, U of Washington

How to turn 
these thick 
regions of 
the gradient 
into curves?
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Canny edge detector
n Non-maxima suppression:

n Check if pixel is local maximum along gradient direction.
n Select single max across width of the edge.
n Requires checking interpolated pixels p and r.
n This operation can be used with any edge operator when thin 

boundaries are wanted.



Non-maximum suppression
At q, we have a 
maximum if the value 
is larger than those at 
both p and at r. 
Interpolate to get 
these values.

Source: D. Forsyth



Assume the marked point is an 
edge point.  Then we construct 
the tangent to the edge curve 
(which is normal to the gradient 
at that point) and use this to 
predict the next points (here 
either r or s). 

Predicting the next edge point

Source: D. Forsyth



Canny edge detector
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Adapted from Steve Seitz, U of Washington

Problem: pixels 
along this edge 
did not survive 
the thresholding
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Canny edge detector
n Hysteresis thresholding:

n Use a high threshold to start edge curves, and a low 
threshold to continue them.



Hysteresis thresholding

original image

high threshold
(strong edges)

low threshold
(weak edges)

hysteresis threshold

Source: L. Fei-Fei
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Canny edge detector
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Canny edge detector
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Edge linking
n Hough transform

n Finding line segments
n Finding circles

n Model fitting
n Fitting line segments
n Fitting ellipses

n Edge tracking



Fitting: main idea
n Choose a parametric model to represent a set of features
n Membership criterion is not local

n Cannot tell whether a point belongs to a given model just by 
looking at that point

n Three main questions:
n What model represents this set of features best?
n Which of several model instances gets which feature?
n How many model instances are there?

n Computational complexity is important
n It is infeasible to examine every possible set of parameters and 

every possible combination of features

34
Adapted from Kristen Grauman



Example: line fitting
n Why fit lines?

n Many objects characterized by presence of straight lines

35
Adapted from Kristen Grauman



Difficulty of line fitting
n Extra edge points (clutter), 

multiple models:
n which points go with which 

line, if any?
n Only some parts of each line 

detected, and some parts 
are missing:
n how to find a line that bridges 

missing evidence?
n Noise in measured edge 

points, orientations:
n how to detect true underlying 

parameters?

36
Adapted from Kristen Grauman



Voting
n It is not feasible to check all combinations of 

features by fitting a model to each possible 
subset.

n Voting is a general technique where we let each 
feature vote for all models that are compatible 
with it.
n Cycle through features, cast votes for model parameters.
n Look for model parameters that receive a lot of votes.

n Noise and clutter features will cast votes too, but 
typically their votes should be inconsistent with 
the majority of “good” features.

37
Adapted from Kristen Grauman
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Hough transform
n The Hough transform is a method for detecting 

lines or curves specified by a parametric function.
n If the parameters are p1, p2, … pn, then the 

Hough procedure uses an n-dimensional 
accumulator array in which it accumulates votes 
for the correct parameters of the lines or curves 
found on the image.

y = mx + b

image m

b

accumulator

Adapted from Linda Shapiro, U of Washington
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Hough transform: line segments

Adapted from Steve Seitz, U of Washington

Connection between image (x,y) and Hough (m,b) spaces
n A line in the image corresponds to a point in Hough space
n To go from image space to Hough space:

n given a set of points (x,y), find all (m,b) such that y = mx + b
n What does a point (x0, y0) in the image space map to?

n Answer:  the solutions of b = -x0m + y0

n This is a line in Hough space

x

y

m

b

Image space Hough (parameter) space
x0

y0



Hough transform: line segments
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What are the line parameters for the line that contains 
both (x0, y0) and (x1, y1)?
n It is the intersection of the lines b = –x0m + y0 and 

b = –x1m + y1

x

y

m

b

Image space Hough (parameter) space
x0

y0

b = –x1m + y1

(x0, y0)

(x1, y1)

Adapted from Steve Seitz, U of Washington
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Hough transform: line segments

n y = mx + b is not suitable (why?)

n The equation generally used is:

d = r sin(θ) + c cos(θ).

d

q

r

c

d is the distance from the line to origin.

θ is the angle the perpendicular makes

with the column axis.

Adapted from Linda Shapiro, U of Washington
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Hough transform: line segments

Adapted from Shapiro and Stockman
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Hough transform: line segments
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Hough transform: line segments



45

Hough transform: line segments
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Hough transform: circles

Adapted from Linda Shapiro, U of Washington

n Circle detection

n Circle equation:

n the point (a,b) is the center of the circle.

n 3 parameters: a, b, r
n If you are looking for circles with known r, than 

you have only two parameters!
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Hough transform: circles
n Main idea: The gradient vector at an edge pixel 

passes from the center of  the circle.
n Circle equations:

n r = r0 + d sin(θ)            r0, c0, d are parameters
n c = c0 + d cos(θ)

*(r,c)
d

Adapted from Linda Shapiro, U of Washington
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Hough transform: circles

Adapted from Shapiro and Stockman
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Hough transform: circles

http://docs.opencv.org/2.4/doc/tutorials/imgpro
c/imgtrans/hough_circle/hough_circle.html

https://www.mathworks.com/help/images/ref/i
mfindcircles.html

http://shreshai.blogspot.com.tr/2015/01/matlab-
tutorial-finding-center-pivot.html
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Hough transform: circles

Zhao et al., “Oil Tanks Extraction from High 
Resolution Imagery Using a Directional and 
Weighted Hough Voting Method”, Journal of 
the Indian Society of Remote Sensing, 
September 2015
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Model fitting
n Mathematical models that fit data not only reveal 

important structure in the data, but also can provide 
efficient representations for further analysis.

n Mathematical models exist for lines, circles, cylinders, and 
many other shapes.

n We can use the method of least squares for determining 
the parameters of the best mathematical model fitting the 
observed data.
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Model fitting: line segments

Adapted from Martial Hebert, CMU
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Model fitting: line segments
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Model fitting: line segments
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Model fitting: line segments
n Problems in fitting:

n Outliers
n Error definition (algebraic vs. geometric distance)
n Statistical interpretation of the error (hypothesis 

testing)
n Nonlinear optimization
n High dimensionality (of the data and/or the number of 

model parameters)
n Additional fit constraints
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Model fitting: ellipses
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Model fitting: ellipses

Adapted from Andrew Fitzgibbon, PAMI 1999
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Model fitting: ellipses

Adapted from Andrew Fitzgibbon, PAMI 1999
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Edge tracking
n Mask-based approach uses masks to identify the 

following events:
n start of a new segment,
n interior point continuing a segment,
n end of a segment,
n junction between multiple segments,
n corner that breaks a segment into two.

junction

corner

Adapted from Linda Shapiro, U of Washington
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Example: object extraction
by Serkan Kiranyaz

Tampere University of Technology
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Example: object extraction
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Example: object extraction
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Example: object recognition
n Mauro Costa’s dissertation at the University of 

Washington for recognizing 3D objects having 
planar, cylindrical, and threaded surfaces:
n Detects edges from two intensity images.
n From the edge image, finds a set of high-level features 

and their relationships.
n Hypothesizes a 3D model using relational indexing.
n Estimates the pose of the object using point pairs, line 

segment pairs, and ellipse/circle pairs.
n Verifies the model after projecting to 2D.
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Example: object recognition

Example scenes used. The labels “left” and “right” indicate the direction of the light source.
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Example: object recognition
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Example: object recognition

1 coaxials-
multi

3 parallel
lines

2 ellipse
encloses

encloses

encloses

coaxial

1        1        2       3

2        3        3       2 

e          e            e           c

Relationship graph and the corresponding 2-graphs.
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Example: object recognition
n Learning phase: 

relational indexing by 
encoding each 2-graph 
and storing in a hash 
table.

n Matching phase: 
voting by each 2-graph 
observed in the image.
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Example: object recognition

1. The matched features of 
the hypothesized object 
are used to determine 
its pose.

2. The 3D mesh of the 
object is used to project 
all its features onto the 
image.

3. A verification 
procedure checks how 
well the object features 
line up with edges on 
the image.

Incorrect hypothesis



Canny Edge Detection
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J. Canny, A Computational Approach To Edge Detection, 
IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-
714, 1986. 



Bilateral Filtering
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Spatially varying filters
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Bilateral filter: kernel depends on the local image content.
See the Szeliski book for details.

*
*
*

input output

Adapted from Sylvian Paris



Spatially varying filters
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Compare to the result of using the same Gaussian kernel everywhere

Adapted from Sylvian Paris

*
*
*

input output



Acknowledgement
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Rest of the slides in this file are taken from: 

https://people.csail.mit.edu/sparis/bf_course/

From: A Gentle Introduction to Bilateral Filtering and its Applications



Goal: Image Smoothing
Split an image into:

n large-scale features, structure

n small-scale features, texture



input smoothed
(structure, large scale)

residual
(texture, small scale)

Gaussian Convolution

BLUR HALOS

Naïve Approach: Gaussian Blur



Impact of Blur and Halos

n If the decomposition introduces blur and halos, 
the final result is corrupted.

Sample manipulation:
increasing texture

(residual ´ 3)



input smoothed
(structure, large scale)

residual
(texture, small scale)

edge-preserving: Bilateral Filter

Bilateral Filter: no Blur, no Halos



input



increasing texture
with Gaussian convolution

H A L O S



increasing texture
with bilateral filter

N O   H A L O S



Many Other Options
n Bilateral filtering is not 

the only image smoothing filter
n Diffusion, wavelets, Bayesian…

n We focus on bilateral filtering
n Suitable for strong smoothing used in computational 

photography
n Conceptually simple



Notation and Definitions

n Image = 2D array of pixels

n Pixel = intensity (scalar) or color (3D vector)

n Ip = value of image I at position: p = ( px , py )

n F [ I ] = output of filter F applied to image I

x

y



Strategy for Smoothing Images
n Images are not smooth because 

adjacent pixels are different.

n Smoothing = making adjacent pixels
look more similar.

n Smoothing strategy
pixel ® average of its neighbors



Box Average

average

input

square neighborhood

output



sum over
all pixels q

normalized
box function

intensity at
pixel q

result at
pixel p

Equation of Box Average

å
Î

-=
S

IBIBA
q

qp qp )(][ s

0



Square Box Generates Defects 
n Axis-aligned streaks
n Blocky results

input

output



unrelated
pixels

unrelated
pixels

related
pixels

Box Profile

The picture can't be displayed.

pixel
position

pixel
weight



Strategy to Solve these Problems

n Use an isotropic (i.e. circular) window.
n Use a window with a smooth falloff.

box window Gaussian window



Gaussian Blur

average

input

per-pixel multiplication

output*



input



box average



Gaussian blur



normalized
Gaussian function

Equation of Gaussian Blur

( )å
Î

-=
S

IGIGB
q

qp qp ||||][ s

Same idea: weighted average of pixels.

0

1



unrelated
pixels

unrelated
pixels

uncertain
pixels

uncertain
pixels

related
pixels

Gaussian Profile

pixel
position

pixel
weight

÷÷
ø

ö
çç
è

æ
-= 2

2

2
exp

2
1

)(
spss
x

xG



Gaussian Filter
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Discrete approximation to Gaussian function with  =1.02-D Gaussian distribution with mean (0,0) and =1

5x5 Gaussian filter with sigma=1.0

Image source: https://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm



size of the window

Spatial Parameter

( )å
Î

-=
S

IGIGB
q

qp qp ||||][ s

small s large s

input

limited smoothing strong smoothing



How to set s
n Depends on the application.

n Common strategy: proportional to image size
n e.g. 2% of the image diagonal
n property: independent of image resolution



Properties of Gaussian Blur
n Weights independent of spatial location

n linear convolution

n well-known operation

n efficient computation (recursive algorithm, FFT…)



Properties of Gaussian Blur
n Does smooth images
n But smoothes too much:

edges are blurred.
n Only spatial distance matters
n No edge term

input

output

( )å
Î

-=
S

IGIGB
q

qp qp ||||][ s
space



Blur Comes from Averaging across Edges

*

*

*

input output

Same Gaussian kernel everywhere.



Bilateral Filter: No Averaging across Edges

*

*

*

input output

The kernel shape depends on the image content.

[Aurich 95, Smith 97, Tomasi 98]



space weight

not new

range weight
I

new

normalization
factor

new

Bilateral Filter Definition: an Additional Edge Term

( ) ( )å
Î

--=
S

IIIGG
W

IBF
q

qqp
p

p qp ||||||1][
rs ss

Same idea: weighted average of pixels.



Illustration a 1D Image
n 1D image = line of pixels

n Better visualized as a plot

pixel
intensity

pixel position



space

Gaussian Blur and Bilateral Filter

space range
normalization

Gaussian blur

( ) ( )å
Î

--=
S

IIIGG
W

IBF
q

qqp
p

p qp ||||||1][
rs ss

Bilateral filter
[Aurich 95, Smith 97, Tomasi 98]

space

space
range

p

p

q

q

( )å
Î
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S

IGIGB
q

qp qp ||||][ s



q
p

Bilateral Filter on a Height Field

output input

( ) ( )å
Î

--=
S

IIIGG
W

IBF
q

qqp
p

p qp ||||||1][
rs ss

p

reproduced
from [Durand 02]



Space and Range Parameters

n space ss : spatial extent of the kernel, size of the 
considered neighborhood.

n range sr : “minimum” amplitude of an edge

( ) ( )å
Î

--=
S

IIIGG
W

IBF
q

qqp
p

p qp ||||||1][
rs ss



Influence of Pixels

p

Only pixels close in space and in range are considered.
space

range



ss = 2

ss = 6

ss = 18

sr = 0.1 sr = 0.25
sr = ¥

(Gaussian blur)

input

Exploring the Parameter Space



ss = 2

ss = 6

ss = 18

sr = 0.1 sr = 0.25
sr = ¥

(Gaussian blur)

input

Varying the Range Parameter



input



sr = 0.1



sr = 0.25



sr = ¥
(Gaussian blur)



ss = 2

ss = 6

ss = 18

sr = 0.1 sr = 0.25
sr = ¥

(Gaussian blur)

input

Varying the Space Parameter



input



ss = 2



ss = 6



ss = 18



How to Set the Parameters
Depends on the application. For instance:

n space parameter: proportional to image size
n e.g., 2% of image diagonal

n range parameter: proportional to edge amplitude
n e.g., mean or median of image gradients

n independent of resolution and exposure



A Few
More Advanced

Remarks



Bilateral Filter Crosses Thin Lines
n Bilateral filter averages across 

features thinner than ~2ss 
n Desirable for smoothing: more pixels = more robust
n Different from diffusion that stops at thin lines

close-up kernel



Iterating the Bilateral Filter

n Generate more piecewise-flat images
n Often not needed in computational photo.

][ )()1( nn IBFI =+



input



1 iteration



2 iterations



4 iterations



Bilateral Filtering Color Images

( ) ( )å
Î

--=
S
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( ) ( )å
Î

--=
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W

IBF
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p

p CCCqp ||||||||1][
rs ss

For gray-level images 

For color images 

intensity difference

color difference

The bilateral filter is
extremely easy to adapt to your need.

scalar

3D vector 
(RGB, Lab)

input

output



Hard to Compute
n Nonlinear

n Complex, spatially varying kernels
n Cannot be precomputed, no FFT…

n Brute-force implementation is slow > 10min

( ) ( )å
Î

--=
S
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p
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rs ss


