

Dr. Sedat Ozer

- Last lecture (before the presentations):
 - Hyper-parameter tuning
 - Optimization in Deep learning
- This week: How was it before the deep learning era!!
 - Features,
 - Hand-crafted features,
 - (Harris) Corner detection,
 - SIFT features,
 - Classification with SVM,

Overview

- Definitions for attributes, features,
- The importance of feature selection,
- Global vs. local features,
- Hessian Matrix and Harris Corner Detection
- SIFT (Scale-invariant feature transform):
 - Examples,
 - Gaussian scale-space,
 - Difference of Gaussians: Laplacian of a Gaussian
 - SIFT Key-point detection,
 - SIFT descriptor computation,
 - Other SIFT-like algorithms and applications,
- Conclusion

Definitions

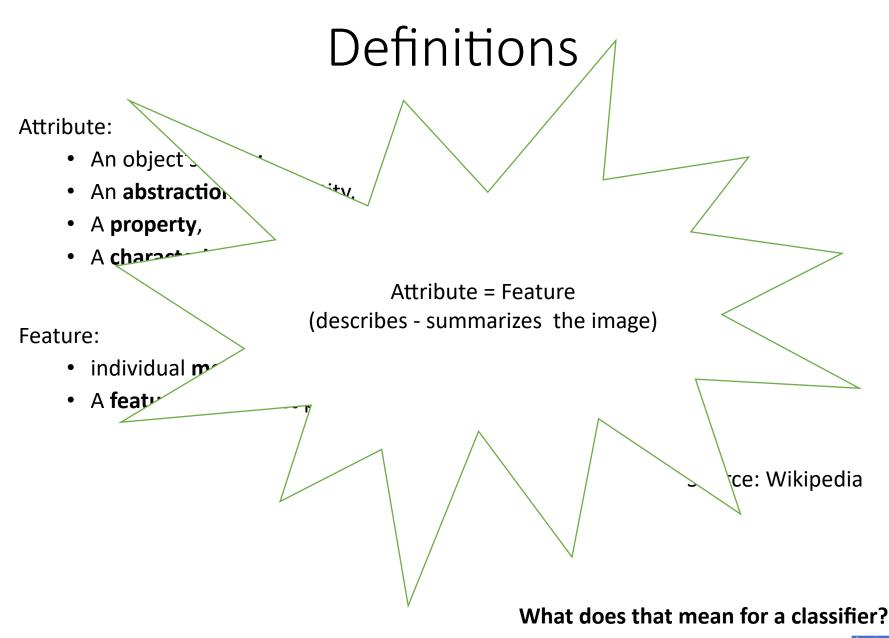
Attribute:

- An object's entity,
- An abstraction of an entity,
- A property,
- A characteristic of a variable (or an object).

Feature:

- individual measurable properties of the phenomena being observed,
- A feature is a **distinct** property or piece.

Source: Wikipedia



Feature-based Tasks

Features are good for:

- Segmentation tasks, (Example: separating the image into two: background and foreground, i.e., region of interest areas),
- **Recognition** tasks, (Example: assigning a label to the segmented region of interests),
- **Regression** tasks, (Examples: Fitting a function, estimation, prediction of a continuous value),
- Tracking tasks, (Example: Correlating objects over time),
- Matching, retrieval tasks, (Example: Searching through a database to list the closest samples),
- Alignment, registration tasks, (Example: scaling both images or objects to the same size and orientation),
- Semantics extraction.

6

A visual analysis example: What is in this image?

Image source: https://www.carthrottle.com/post/this-crazy-8000bhp-bmw-concept-is-the-coolest-thing-youve-ever-see/

Dream car of a 4 years old kid!

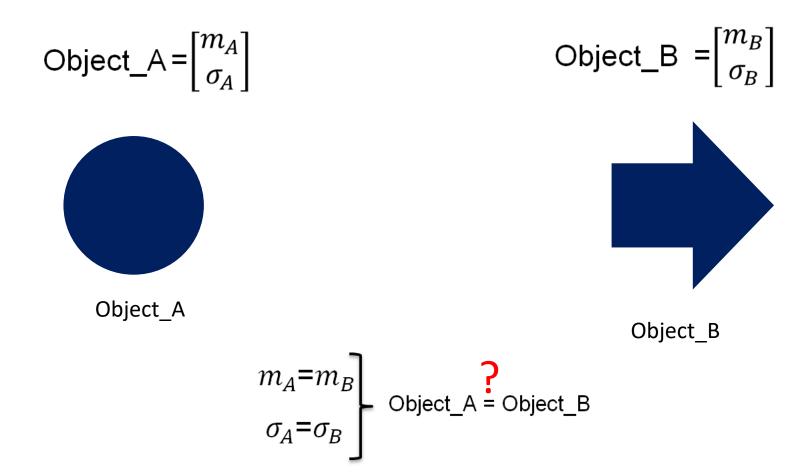
- 42 wheels, and of course 42-wheel drive
- Powered by 19 Porsche engines, each engine producing 459 horsepower.
- All engines linked to a single transmission.
- Three seats, three steering wheels all operating simultaneously
- The trunk would be full of toys, and you can play in it!

Choosing the appropriate features is important: An Illustration

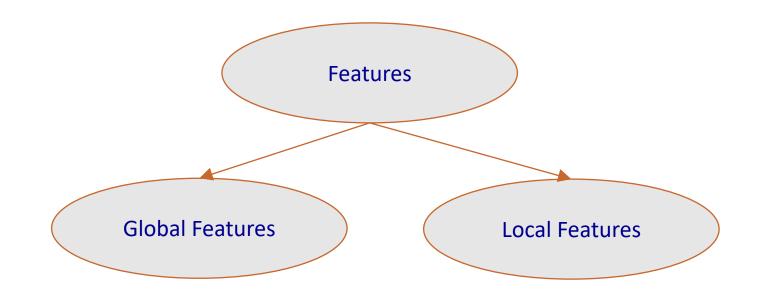
$$Object_A = \begin{bmatrix} m_A \\ \sigma_A \end{bmatrix} \qquad Object_B = \begin{bmatrix} m_B \\ \sigma_B \end{bmatrix}$$

Assume you have segmented two regions in an image and computed the mean and variance values of the interior pixel values for both of those regions:

Choosing the appropriate features matters! An Illustration:



Global vs. Local Features:



Summarizes a global characteristic of the object/image.

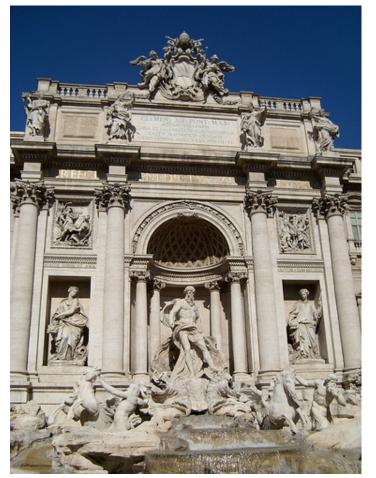
Examples: shape-based: mean, variance, volume, Mass, Moments, Centroid, Orientation, image histogram, etc.

Summarizes a smaller (local) area.

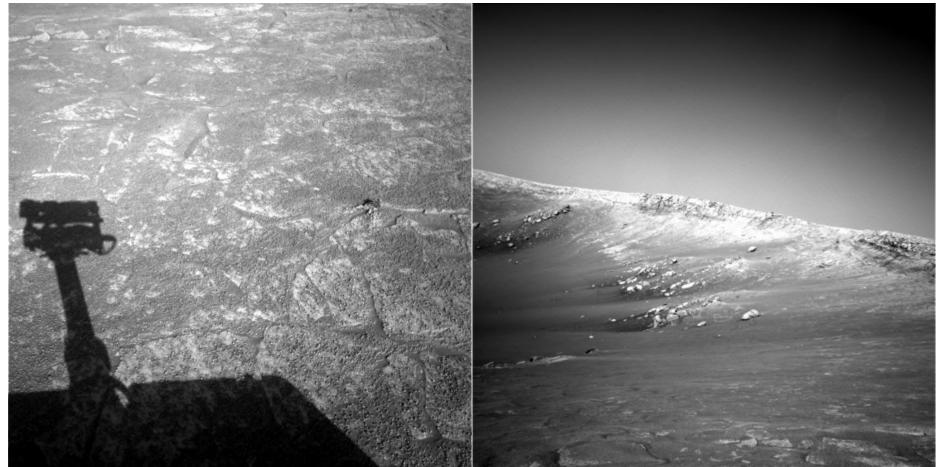
Examples: (pixel) neighborhood based statistics, Local curvature, local min/max, local gradients, corner points, etc.

Stereo correspondence and 3D reconstruction

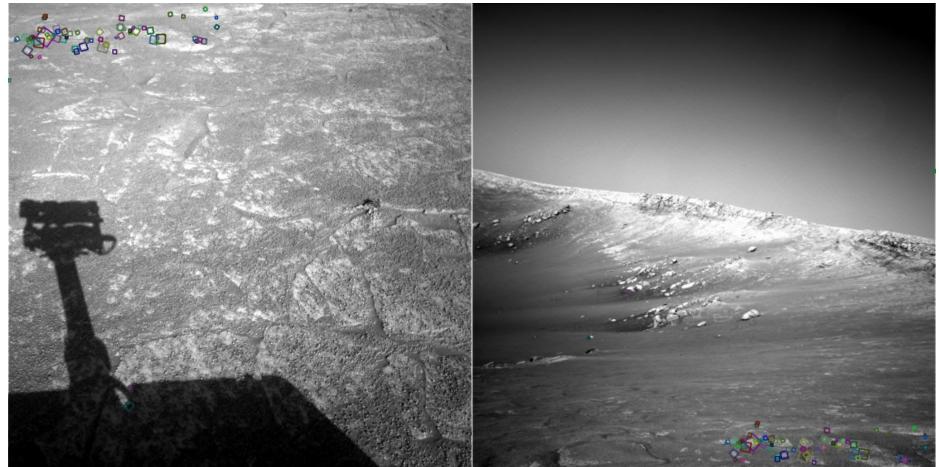
Two images of Rome from Flickr



Two images of Rome from Flickr: harder case



Two images from NASA Mars Rover: even harder case



Two images from NASA Mars Rover: matching using local features

Advantages of local features

- Locality
 - features are local, so robust to occlusion and clutter
- Distinctiveness
 - can differentiate a large database of objects
- Quantity
 - hundreds or thousands in a single image
- Efficiency
 - real-time performance achievable
- Generality
 - exploit different types of features in different situations

Local features

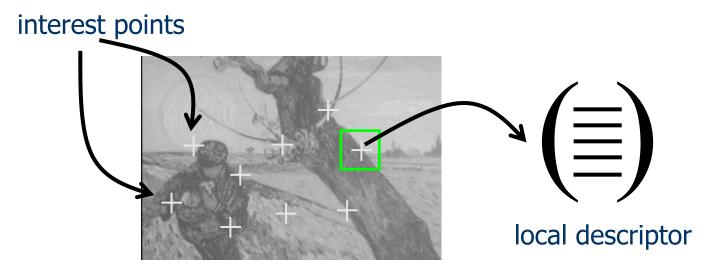
- What makes a good feature?
- We want **uniqueness**.
 - Look for image regions that are **unusual**.
 - Lead to **unambiguous** matches in other images.
- How to define "unusual"?



OD structure not useful for matching 10 structure edge, can be localized in 1D, subject to the aperture problem

structure corner, can be localized in 2D, good for matching

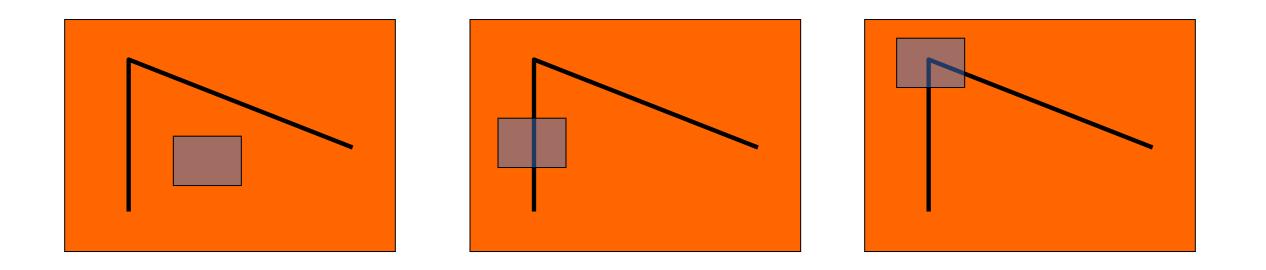
Overview of the approach



- 1. Extraction of interest points (characteristic locations).
- 2. Computation of local descriptors.
- 3. Determining correspondences.
- 4. Using these correspondences for matching/recognition/etc.

Local measures of uniqueness

Suppose we only consider a small window of pixelsWhat defines whether a feature is a good or bad candidate?



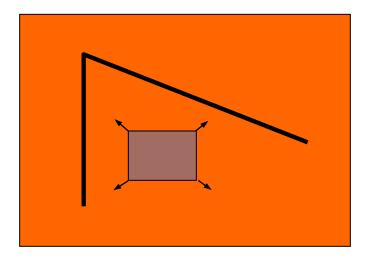
Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.

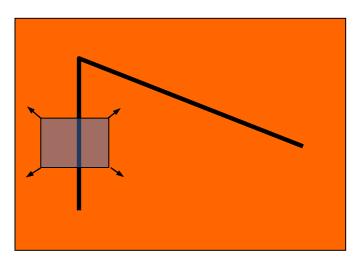
Slide source: Ali Farhadi

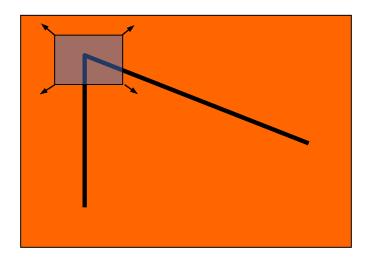
Feature detection

Local measure of feature uniqueness

- How does the window change when you shift it?
- Shifting the window in *any direction* causes a *big change*







"flat" region: no change in all directions

"edge": no change along the edge direction "corner": significant change in all directions

Slide adapted from Darya Frolova, Denis Simakov, Weizmann Institute.

Consider shifting the window W by (u,v)

- how do the pixels in W change?
- compare each pixel before and after by summing up the squared differences (SSD)
- this defines an SSD "error" of *E(u,v)*:

$$E(u,v) = \sum_{(x,y)\in W} \left[I(x+u,y+v) - I(x,y) \right]^2$$

Small motion assumption

Taylor Series expansion of I:

$$I(x+u, y+v) = I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + higher order terms$$

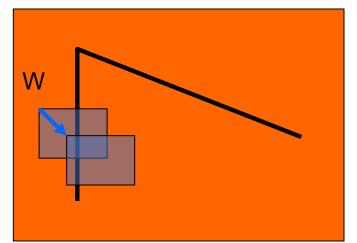
If the motion (u,v) is small, then first order approx is good enough

$$I(x + u, y + v) \approx I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$$
$$\approx I(x, y) + [I_x \ I_y] \begin{bmatrix} u \\ v \end{bmatrix}$$
shorthand: $I_x = \frac{\partial I}{\partial x}$

Plugging this into the formula on the previous slide...

Consider shifting the window W by (u,v)

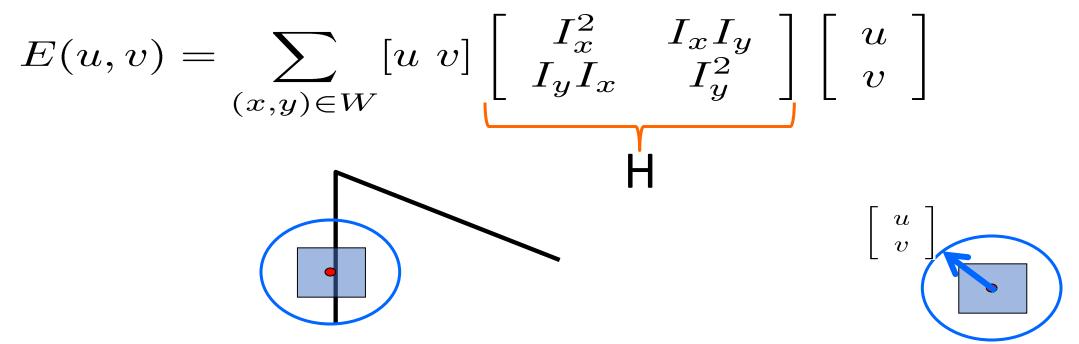
- how do the pixels in W change?
- compare each pixel before and after by summing up the squared differences
- this defines an "error" of E(u,v):



$$E(u,v) = \sum_{(x,y)\in W} [I(x+u,y+v) - I(x,y)]^2$$

$$\approx \sum_{(x,y)\in W} \left[I(x,y) + \left[I_x \ I_y \right] \left[\begin{array}{c} u \\ v \end{array} \right] - I(x,y) \right]$$
$$\approx \sum_{(x,y)\in W} \left[\left[I_x \ I_y \right] \left[\begin{array}{c} u \\ v \end{array} \right] \right]^2$$

This can be rewritten:



For the example above

- You can move the center of the blue window to anywhere on the blue unit circle
- Which directions will result in the largest and smallest E values?
- We can find these directions by looking at the eigenvectors of *H*

Quick eigenvalue/eigenvector review The eigenvectors of a matrix **A** are the vectors (**x**) that satisfy:

$$A\mathbf{x}=\lambda\mathbf{x} \quad \longrightarrow \quad Ax = \lambda x$$

The scalar λ is the **eigenvalue** corresponding to **x**

• The eigenvalues are found by solving:

• The solution:

$$\lambda_{\pm} = \frac{1}{2} \left[(h_{11} + h_{22}) \pm \sqrt{4h_{12}h_{21} + (h_{11} - h_{22})^2} \right]$$

Once you know λ , you find **x** by solving:

$$\begin{bmatrix} h_{11} - \lambda & h_{12} \\ h_{21} & h_{22} - \lambda \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0$$

$$det(A - \lambda I) = 0$$

$$det \begin{bmatrix} h_{11} - \lambda & h_{12} \\ h_{21} & h_{22} - \lambda \end{bmatrix} = 0$$

This can be re-written:

$$E(u, v) = \sum_{(x,y)\in W} \begin{bmatrix} u & v \end{bmatrix} \begin{bmatrix} I_x^2 & I_x I_y \\ I_y I_x & I_y^2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$$

$$H_{\text{instead of H}}^{\text{(Also known as M matrix,}}$$

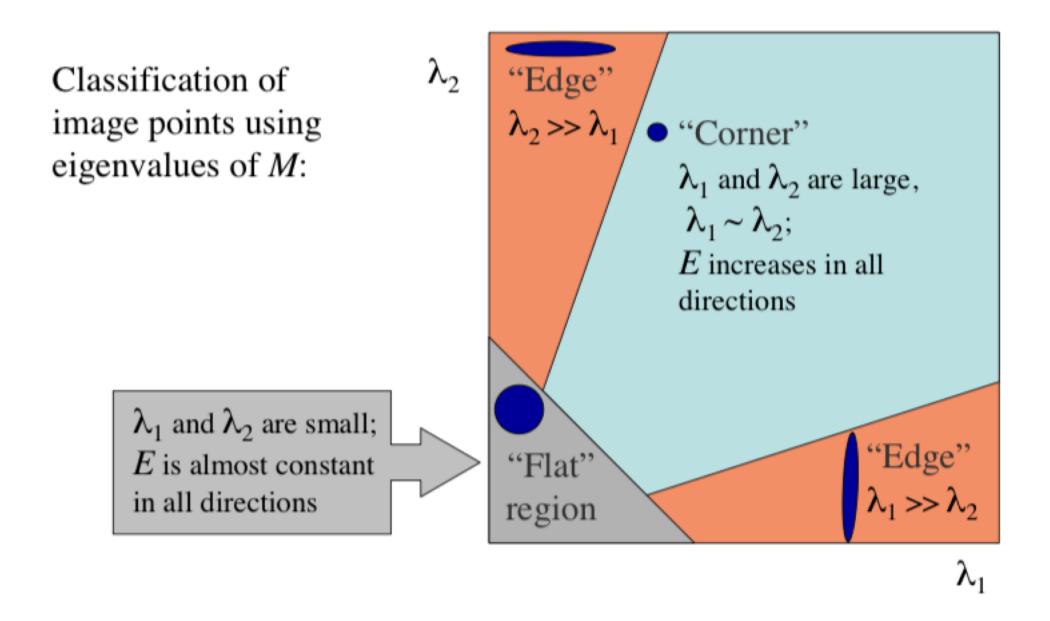
$$H_{\text{instead of H}}^{\text{(Also instead of H)}} \begin{bmatrix} u \\ v \end{bmatrix}$$

Eigenvalues and eigenvectors of H

- Define shifts with the smallest and largest change (E value)
- x₊ = direction of **largest increase** in E.
- λ_{+} = amount of increase in direction x_{+}
- x₋ = direction of **smallest increase** in E.

Slide source: Ali Farhadi• λ - = amount of increase in direction x₊

$$Hx_{+} = \lambda_{+}x_{+}$$
$$Hx_{-} = \lambda_{-}x_{-}$$



How are λ_+ , x_+ , λ_- , and x_+ relevant for feature detection?

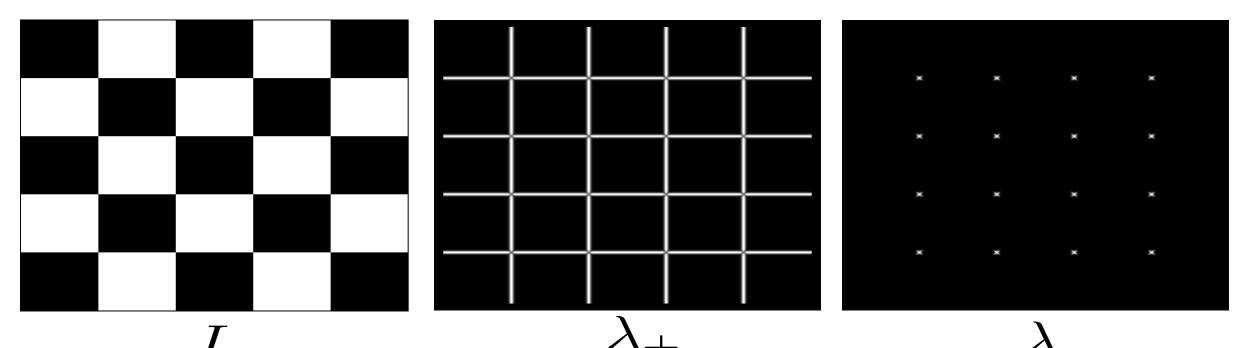
• What's our feature scoring function?

How are λ_+ , x_+ , λ_- , and x_+ relevant for feature detection?

• What's our feature scoring function?

Want E(u,v) to be *large* for small shifts in *all* directions

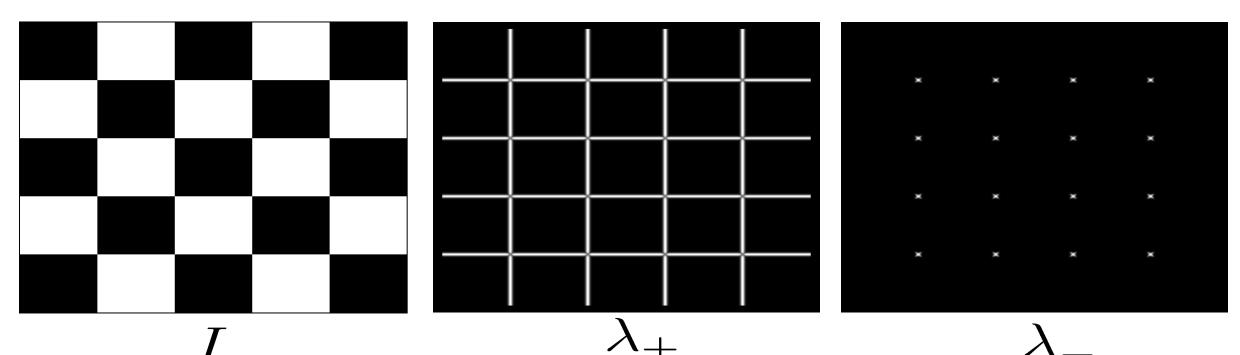
- the *minimum* of *E(u,v)* should be large, over all unit vectors [u v]
- this minimum is given by the smaller eigenvalue (λ_{-}) of *H*



Feature detection summary

Here's what you do

- Compute the gradient at each point in the image
- Create the *H* matrix from the entries in the gradient (for each pixel)
- Compute the eigenvalues.
- Find points with large response (λ_{-} > threshold)
- Choose those points where $\lambda_{\mathchar`-}$ is a local maximum as features

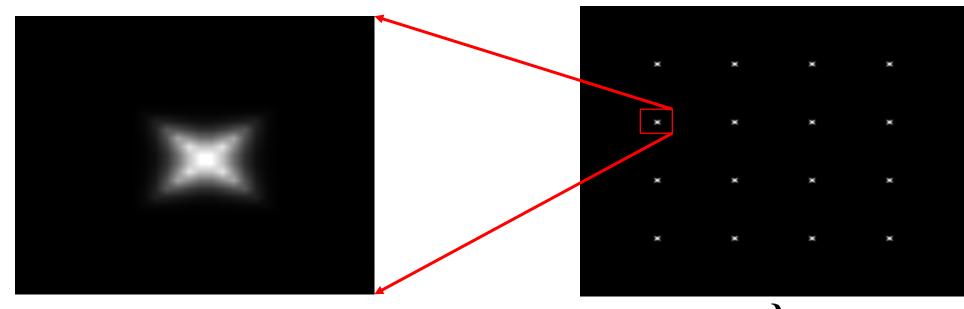


lotes for Computer Vision|**Sedat Ozer**

Feature detection summary

Here's what you do

- Compute the gradient at each point in the image
- Create the *H* matrix from the entries in the gradient
- Compute the eigenvalues.
- Find points with large response (λ_{-} > threshold)
- Choose those points where λ_{-} is a local maximum as features



Harris Corner Detection

Paper:

Chris Harris and Mike Stephens, "A Combined Corner and Edge Detector", 1988

Harris Corner (curvature) Response

Look at the Eigen values of H matrix only!

• $R = \det H - k (\operatorname{trace} H)^2$

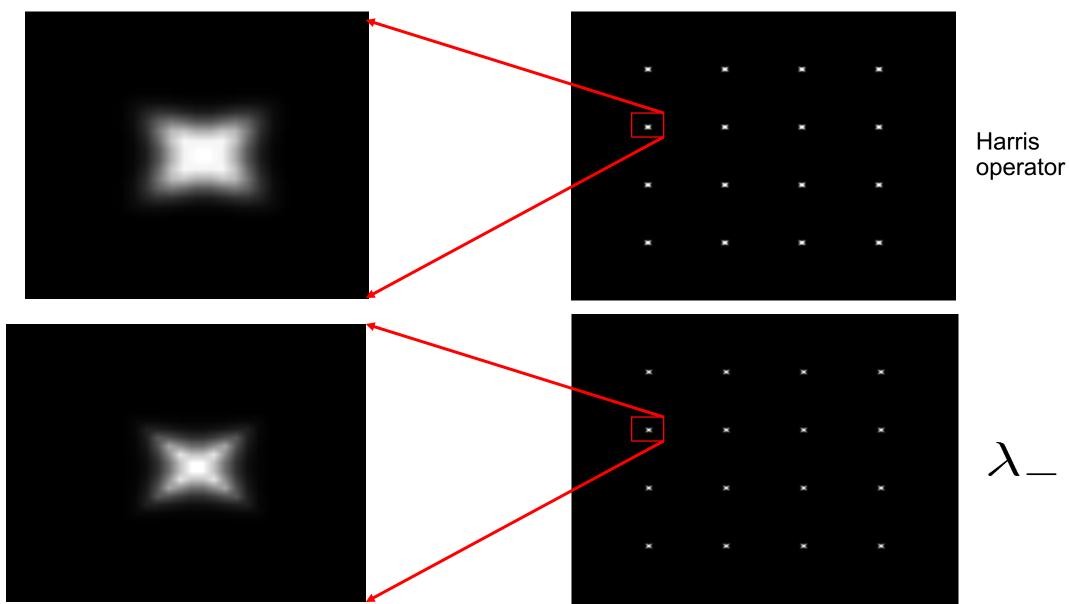
 $det H = \lambda_1 \lambda_2$ trace $H = \lambda_1 + \lambda_2$

(k is an empirical constant, choose k = 0.04 - 0.06)

$$\lambda_{2}$$

"Edge" "Corner"
 $R < 0$
 $R > 0$
"Flat" "Edge"
 $R < 0$
 $K < 0$
 $R < 0$
 $K < 0$
 λ_{1}

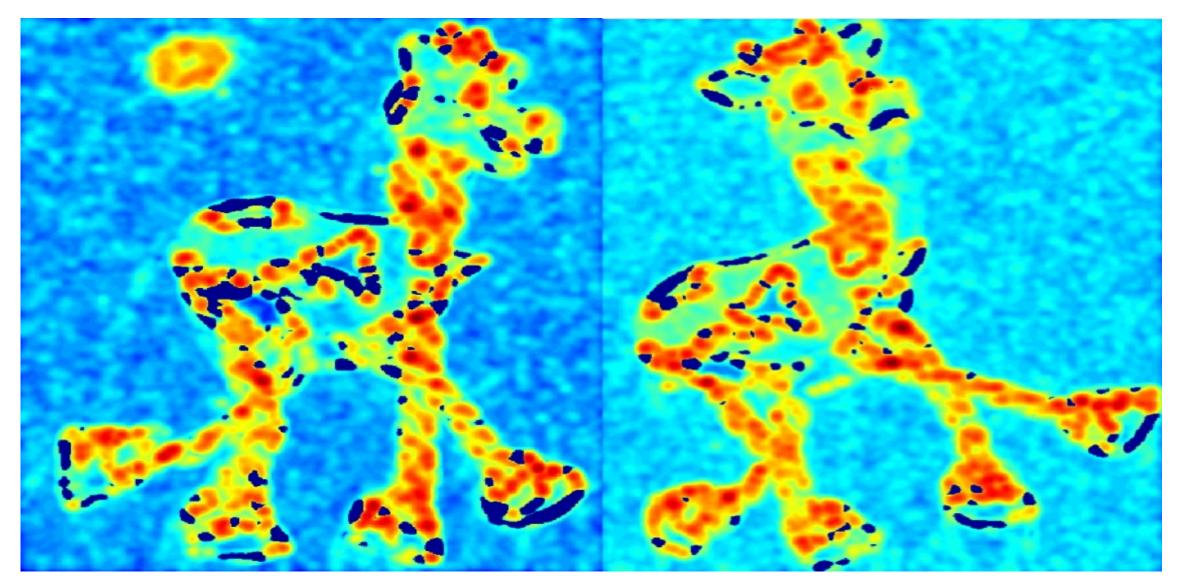
The "Harris operator"



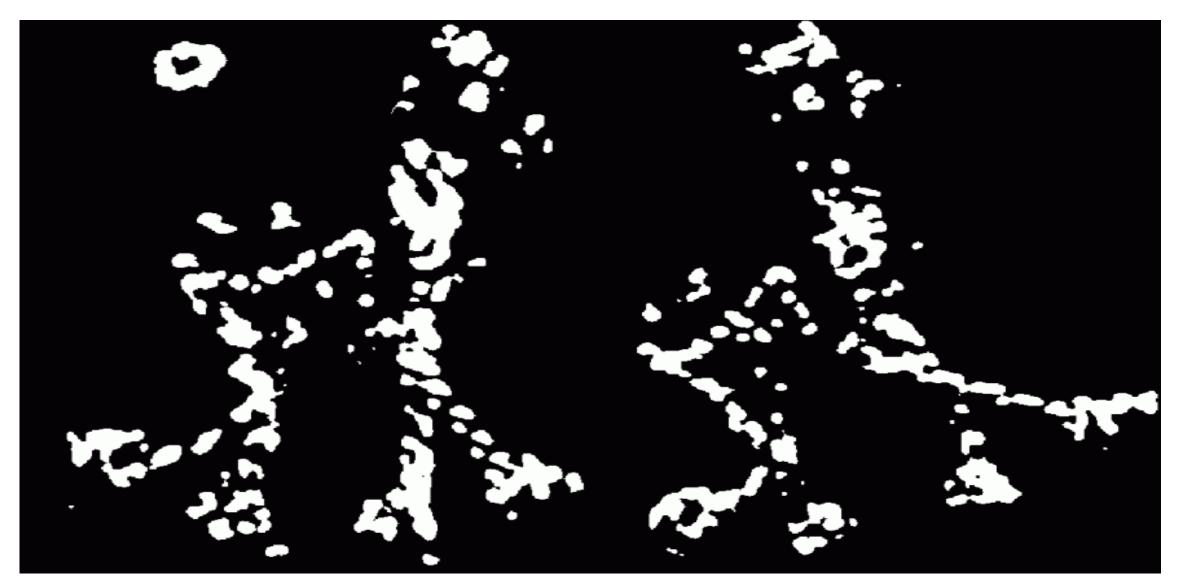
Slide source: Ali Farhadi

Harris (corner) detector example

R value (red high, blue low)



Threshold (R > ConstantValue)



Find local maxima of R

. . .

· -

Harris features (Shown in red)

Harris Corner Detection - Steps:

- Compute the Gaussian derivatives for each pixel
- Compute the Hessian matrix (also known as: second moment matrix *M*) in a Gaussian window around each pixel
- Compute the R values for each pixel
- Threshold R
- Apply non-maximum suppression

What about invariance?

Suppose you **rotate** the image by some angle

• Will you still pick up the same features?

What if you change the brightness?

- Scale?
 - Key idea: find scale that gives local maximum of R

Some known problems:

