: CS484 - CS555:
Introduction to Computer Vision

Shape Analysis with Kernel Machines

Dr. Sedat OZER




Today

Kernel Machines

Remember from the first lecture:

| e |

SIFT or HOG K-Means, VLAD SVM
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Outline
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Outline

2. Towards SVM... Even more discussion

» Classification vs Regression?

o Structural Risk Minimization?
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Support Vector Machines

* A machine learning algorithm
A classifier (also a regression) algorithm

* The era of (mostly): between late 1990s and late 2000s

Remember: You do not always need “deep” algorithms!




Questions:

 What is supervised learning?

* What is unsupervised learning?
* What is classification?

 What is regression?

e What is structural risk minimization?
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Fundamentals: Structural Risk Minimization

Empirical Risk Minimization

R(h) = E[L(h(z),y)] = f L(h(z),y)dP(z,y)

1 m .
Remp(h--) = m Z L(h(x;),y;).
i=1

where h()=f(): the hypothesis function (the model)
L: Loss function, P: joint distribution
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Fundamentals: Structural Risk Minimization (old school ©)

Empirical Risk Minimization

R(h) = E[L(h-(:c) y) = / L(h(z),y)dP(z,y)

Remp(h) = Z L(h

where h()= () the hypotheS|s function (the model)
L: Loss function, P: joint distribution

Figure 1: Dividing The Hypothesis Space into nested complexity 4 Best

subsets Model
Underfitting Overfitting

VC Confidence Error

Bound on test error

VC Confidence

n ln(zm +1)- ln((S)
n 4

m

With (1-3 ) probability this inequality holds! Where n Training error (Remp)

is the VC dimension.

»
»

fy(x) f1(x) f5(x) VC dimension n

Figure 2: SRM principle
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Fundamentals: Support Vector Machines

A © o ° o) o o o
° o °© o °o
° o ° o ° o
° o ® o® . o © o o - HOW tO Separate th'S
« °® o,
(size1) ° ° °® ° ° o Ooo o data?
I (]
® ° ) ° o °
o0 ° .
o ° o
° ° . .
[ ) Y . o
° ° >
0 X, (weight)
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Fundamentals: Support Vector Machines

- How to separate this
data?

By drawing this line?

0 X, (weight)
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Fundamentals: Support Vector Machines

/’Or this one?
o o
(@] OO (@] o

- How to separate this
data?

By drawing this line?

0 X, (weight)
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Fundamentals: Support Vector Machines

/Or this one?
o o
° Oo ° (@]

- How to separate this
data?

By drawing this line?

0 X, (weight)

Figure: Which line is the optimal decision line
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Fundamentals: Support Vector Machines

/Or this one?
o o
° Oo ° (@]

By drawi

0 X, (weight)

Figure: Which line is the optimal decision line
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Fundamentals: Support Vector Machines

Line 1
Line 2
Line 3

X, (weight)

\\_june 4

Figure: Which line is the optimal decision line

Which line?
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Fundamentals: Support Vector Machines

Plus-Line

Classifier Boundary

A
Minus-Line
°
. o '\’bo(\e
7
X»] L«‘
(size) 2
¥ Figure 4: Maximum Margin
0 X, (weight)

Figure: Which line is the optimal decision line

Which line?

Figure 5: Maximum Margin Width
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Fundamentals: Support Vector Machines

Y ‘<w,x+>+b‘ ‘<W,X_>+b‘
e ™ A

e
] [l Il

Can you use these two
conditions, ideas to find
the parameters?

y<w,x, >+b] =1
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Fundamentals: Support Vector Machines

Y ‘<w,x+>+b‘ ‘<W,X_>+b‘
e ™ A

e
] [l Il

Can you use these two
conditions, ideas to find

[<w,x >+b]21
Vi< w,X; > +0] the parameters?

Build a cost function
and use optimization
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Fundamentals: Support Vector Machines

N o
[wi - wl - w] = L(W,b,O{)=5HWH —;ai [yl.(< W,X. >+b)—1]

yiI<w,x;, >+b]=>1

—
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Fundamentals: Support Vector Machines
Lagrange multiplier

e

Il wl

y[<w,Xx, >+b]

HWH

— L(w,b

> 1

—

1 /

i=l

-

a.

l[yi(< W, X. >+b)—1]
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Fundamentals: Support Vector Machines

N o
[wi - wl - w] = L(W,b,O{)=5HWH —;ai [yl.(< W,X. >+b)—1]

yiI<w,x;, >+b]=>1

— OL(W,b, ) l
=0=>0=)) a
ab ; lyl
OL(wW,b, ) !
27 0=>w= ) a.VX.
a ; lyl l

22
Lecture Notes for Computer Vision | Sedat Ozer



Fundamentals: Support Vector Machines

Lo b= =S [ (< wox, > ) 1]
i=1

OL(w,b,) l
=0=0=) a.vy.
ab ; lyl
OL(wW,b,)

oW

[
=0=>w= Zal.yixl.
i=1
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Fundamentals: Support Vector Machines

Lo b= =S [ (< wox, > ) 1]
i=1

OL(W,b, o) !
=0=0=) av
ab ; lyl
OL(w,b, ) l
> 7 =_0=>w= ) a.vX.
a ; lyl l
! 1

[ 1
Pla)= D 0= D D 0y <XisX, >
i=1 i=l j=1




Fundamentals: Support Vector Machines

Dual cost function (maximize)

- / ’ 1

—_—

Optimization part Za_y_ —0

(for training) =l <« Dual constraints

k: total number of Support Vectors (SV)

k
Decision function: f(X)=sgn (Z ay, <XX, > +bj
i=l1
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Fundamentals: Support Vector Machines

- ® Plus-Line
25° A ¢ /
o .

Classifier Boundary

_~ Minus-Line

Figure : Linear-Noisy Data

Typically, SVs are laying on the planes...
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Fundamentals: Support Vector Machines (C-SVM)

Figure : Linear-Noisy Data

=2 YISW,X, >+b]21-&
wl

pow. &)= W[ +CX ¢
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Fundamentals:

Support Vector Machines (C-SVM)

Classifier Boundary

Minus-Line

°
°
® e
A o AT°
NG ([
7
2 A
o
) °
oN A
X0 [ ) , .
R Figure : Linear-Noisy Data

g -5 V< WX, >+b]21-&

pow. &)= W[ +CX ¢
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Fundamentals: Support Vector Machines (C-SVM)

[ 1 [
Pla) =D 0 =2 ). 0 0,0y, < XX, >
i=l j

i=1 j=1

Zl:aiyi =0
i=1

Cza, 20

Use optimization libraries (such as Matlab libraries, MOSEK, etc) to solve
this quadratic constraint optimization problem.

Or... Use sequential minimal optimization (SMO) method.
Or... Use gradient descent ©

Or...
29
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Fundamentals: Support Vector Machines: Nonlinear Data

Problem: SVM is designed to separate

linear data, so how can we apply
SVM onto non-linear data?
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Fundamentals: Support Vector Machines: Nonlinear Data

X4 ° )
4
o Xz
% °
[} .. -
(a):Nonlinear Data in (b): Transformed Linearly
2 dimensional space Separable Data in
3dimensional space

Figure: Transforming the Data by using the transformation function g(.)
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Fundamentals: Support Vector Machines: Kernel Functions

k
Decision Function:  f(X)=sgn (Z ay, <XX, > +bj
i=1

f(x)=sgn (Zal-yl- <g(x),8(x) > +bj
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Fundamentals: Support Vector Machines: Kernel Functions

k
Decision Function:  f(X)=sgn (Z ay, <XX, > +bj
i=1

Kernel function

DEFINITION:

K

f(x)=sgn (Zal-yl- <g(x),8(x) > +bj

(x,X;) =(g(x), g(x;))
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Fundamentals: Support Vector Machines: Kernel Trick

k
Decision Function:  f(X)=sgn (Z ay, <XX, > +bj
i=1

f@%ﬂg{Z}hn<ﬂﬂ@@J>HJ

Kernel function

K|(x,x;) =(g(x),g(x;))

k
Decision Function (New form) : f(x) = sgn(Z ay,

i=l1

Kernel trick!

l(x,xi)+bj
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Fundamentals: Kernel Functions

K(x,x;) =(g(x),g(x;)

K(x;,x;) = K(x;,X;)
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Fundamentals: Kernel Functions

K(x,x;) =(g(x),g(x;)

K(x;,x;) = K(x;,X;)

Mercer Kernels: Mercer Condition

|| K (x.3)g(x)g(»)dxdy = 0

36
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Fundamentals: Support Vector Machines (C-SVM)
d(ar) = Ea ——}j}j @y, <8(x),8(x)>

11]1

Cza, 20

Use optimization libraries (such as Matlab libraries, MOSEK, etc) to solve
this quadratic constraint optimization problem.

Or... Use sequential minimal optimization (SMO) method.
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Fundamentals: Kernel Function Examples

1. Polynomial Kernel Functions:

<X,Xl.>)d (x,x,)+1

K(X,Xl.)I( K(Xaxi):( )d

2. Wavelet Kernel Functions:

2
= Xi — Vi X = Vi
K(x, :l I Cos| 1.75—* |exp| —

3. Gaussian Kernel Function: (Radial Basis Function)

2
|x—x,

K(x,xi)—exp{ o J
o
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Fundamentals: Valid Kernel Properties

1. Linear combinations of Kernels
K(x,y)= a, K, (X,y)+ a,k, (X,y)

a,,a, >0

2. Kernel Products

K(x,y) =K, (x,y)K,(X,y)

3. Power Series Expansion:

K(x,y)=K(<x,y >) K(z):Zanz” a,>0
=0
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Generalized Chebyshev Kernel Functions

Generalized Chebyshev Kernel Function:

> 1T (y)
K(x,y) = \/m_ <%y >

40
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Multiple Kernel Learning

Multiple Kernel Learning

Classical SVM

max Q) = Z(t - = Z Z“:“;'N}Jh (X3, X)),

i=1 1—l j=1
n

5.t Zn,-y,, =0 and C' > ao; > 0
=1

rndeaJ Za,——ZZany,y,Zjh Xi, X;j),

i=1 j=1

s.t. Zm—yi =0, Zd =1, C>a;>0and B, >0

i=1 r=1

* Kernel functions (K. ) are given already.
 What if they are not the optimal kernel functions spanning the optimal solution space?
* |s it not costly to use two-step optimization? (Especially in the big data era)?

41
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Similarity Domains Machine (2018)

Class1l=(+1) zone " |
max Q) = Z a; — o Z Z oYy Ko (Xi, Xj),

x e
i=1 i=1 j=1

subject to: Z a;y; =0, C>a;>0fori=1,2,....n,
i=1
and K,ij(xi,%x5) < T, if yiy; = —1, Vi, j

o C

lass2=(-1) zone

Paper: Sedat Ozer, “Similarity Domains Machine for Scale-invariant and Sparse Shape Modeling” 42
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What is new?

. KerneIAoarameters are hard to choose from and can drastically change the classification results
depending on the dataset. SDM solves that issue analytically by assigning different kernel
parameters to different SVs!

* SDM uses Gaussian kernel as default!
* Define a local similarity domain in the feature space defined by the kernel parameter.

e Put each SV at the center of those local similarity domains!
* (Each SV has its own kernel parameter)

* Use only one cost function to be optimized. No need to two-step optimization.

* Visualize and explain the kernel parameters for the first time without requiring an additional tool!
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Comparison: SVM vs SDM

Training Data

SDM

SVM with Gaussian kernel at different kernel parameters
Image source: [Ozer 2018]



Kernel parameters? What are they looking like?

Original (binary) image:

SEEETFE T

-
e

bt PO Va0 "t gt B NP oo
All the computed kernel parameters are visualized All of the foreground kernel params are visualized 45

Image source: [Ozer 2018, “Similarity Domains Machine]



Can we use these parameters and do something
with them?

Image source: Sedat Ozer Lecture Notes for Computer Vision | Sedat Ozer



Scale-invariance in machine learning parameters?
Huh?

Domain2
(s,Domain1)

Domain3
(s,Domain1l)

Train in Domainl and then scale that

classifier to Domain2 and/or to
Domain3 respectively.

Domain adaptation

Image source: [Ozer 2018]




Scale-invariance in machine learning parameters?
H u h ? 106x106 image
.

¥ " ¥

1000x1000 background 115x115 image Scale (S=3) Scale (S=5) Scale (S=10.75)

What we can do with scale-invariant machine learning algorithm: SDM results.
Image source: Sedat Ozer



How about computation time?

* SDM has multiple optimization techniques.
* Some focused on speed and some focused on accuracy!

* SDM beats the best SVM implementations in terms of the
computation time with particular optimization techniques while
maintaining high accuracy!




Summary

SVM is, fundamentally, a binary classifier.

SVs are the training vectors that have nonzero alfa values.

SVM is still one of the state of the art learning algorithms among the “shallow” techniques. ©

SVM idea has been heavily modified for different applications and purposes. Many versions are
available. (See Similarity Domains Machine for example ©)
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