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Today

Kernel Machines
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Image Features BoW Histogram Classifier Result

Recipe 

Remember from the first lecture:

SIFT or HOG SVMK-Means, VLAD
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1. Fundamentals: Discussion

• Machine Learning?

• Supervised Learning?

• Unsupervised Learning?

• Pattern?

Outline



Lecture Notes for Computer Vision  Sedat Ozer

4

1. Fundamentals: Discussion

• Machine Learning?

• Supervised Learning?

• Unsupervised Learning?

Outline

2. Towards SVM… Even more discussion

• Classification vs Regression?

• Structural Risk Minimization?



Lecture Notes for Computer Vision  Sedat Ozer

5

1. Fundamentals: Discussion

• Machine Learning?

• Supervised Learning?

• Unsupervised Learning?

• Pattern?

Outline

2. Towards SVM… Even more discussion

• Classification vs Regression?

• Structural Risk Minimization?

3. Finally… SVM Classification



Lecture Notes for Computer Vision  Sedat Ozer

6
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• Machine Learning?
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• Classification vs Regression?

• Structural Risk Minimization?

3. Finally… SVM Classification

4. Similarity Domains 

Machine and MKL
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Support Vector Machines

• A machine learning algorithm
• A classifier (also a regression) algorithm

• The era of (mostly): between late 1990s and late 2000s

7

Remember: You do not always need “deep” algorithms!
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Questions:

• What is supervised learning?

• What is unsupervised learning?

• What is classification?

• What is regression?

• What is structural risk minimization?

8
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where h()=f(): the hypothesis function (the model)
L: Loss function, P: joint distribution

Empirical Risk Minimization

Fundamentals: Structural Risk Minimization
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Fundamentals: Structural Risk Minimization (old school J)

S2S3

S4

Figure 1: Dividing The Hypothesis Space into nested complexity 
subsets

f(x)
f1(x)

f3(x)
f4(x)

f2(x)

S1 f5(x)

R ≤ Remp +
n ln(2m

n
+1)− ln(δ

4
)

m

Figure 2: SRM principle 

VC dimension  n

Error

VC Confidence

Bound on test error

Training error (Remp)

Best 
Model

Underfitting Overfitting

f1(x)f2(x) f5(x)

With  (1-δ ) probability this inequality holds! Where n 
is the VC dimension.

Empirical Risk Minimization

VC Confidence

where h()=f(): the hypothesis function (the model)
L: Loss function, P: joint distribution
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Fundamentals: Support Vector Machines

x2 (weight)

x1
(size)

0

How to separate this 
data?
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Fundamentals: Support Vector Machines

x2 (weight)

x1
(size)

0

How to separate this 
data?

By drawing this line?
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Fundamentals: Support Vector Machines

x2 (weight)

x1
(size)

0

How to separate this 
data?

By drawing this line?

Or this one?
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Fundamentals: Support Vector Machines

Figure: Which line is the optimal decision line

x2 (weight)

x1
(size)

0

How to separate this 
data?

By drawing this line?

Or this one?
Errmm, c�mon

does it really matter?
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Fundamentals: Support Vector Machines

Figure: Which line is the optimal decision line

x2 (weight)

x1
(size)

0

How to separate this 
data?

By drawing this line?

Errmm, c�mon
does it really matter?

Answer: it may not J
if we are lucky. (lucky? 
What is the probability 

of being lucky?)

Or this one?
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Fundamentals: Support Vector Machines

Figure: Which line is the optimal decision line

x2 (weight)

x1
(size)

0

Which line? 

Line 1
Line 2
Line 3

Line 4
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Fundamentals: Support Vector Machines

Figure: Which line is the optimal decision line

x2 (weight)

x1
(size)

0

x+

x-

Plus-Line

Minus-Line

Classifier Boundary

Class 1 = +1 zone

Class 2= -1 zone

Figure 4: Maximum Margin

<w,x>+b=1

<w,x>+b=0

<w,x>+b=-1

M2

M1

x+

x-

Class 1 = +1 zone

Class 2= -1 zone

Figure 5: Maximum Margin Width

<w,x>+b=1

<w,x>+b=0

<w,x>+b=-1

Which line? 
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Fundamentals: Support Vector Machines

1 2

b b
M M M

+ -< > + < > +
= + = +

w,x w,x

w w

1 1 2M
-

= + =
w w w

[ ] 1i iy b< > + ³w,x

Can you use these two 
conditions, ideas to find 
the parameters?

M2

M1

x+

x-

Class 1 = +1 zone

Class 2= -1 zone

<w,x>+b=1

<w,x>+b=0

<w,x>+b=-1
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Fundamentals: Support Vector Machines

1 2

b b
M M M

+ -< > + < > +
= + = +

w,x w,x

w w

1 1 2M
-

= + =
w w w

[ ] 1i iy b< > + ³w,x

Build a cost function 
and use optimization

Can you use these two 
conditions, ideas to find 
the parameters?
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Fundamentals: Support Vector Machines
1 1 2M

-
= + =
w w w

[ ] 1i iy b< > + ³w,x

L(w,b,α) = 1
2
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#
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Fundamentals: Support Vector Machines
Lagrange multiplier

1 1 2M
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Fundamentals: Support Vector Machines
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Fundamentals: Support Vector Machines
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Fundamentals: Support Vector Machines
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Fundamentals: Support Vector Machines

1
( ) sgn

k

i i i
i

f y ba
=

æ ö
= < > +ç ÷
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åx x,xDecision function:
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Optimization part

(for training) 1
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αi ≥ 0

Dual cost function (maximize)

k: total number of Support Vectors (SV)

Dual constraints
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d3

d2d1

x+

x-

Plus-Line

Minus-Line

Classifier Boundary

Class 2= -1 zone

Figure : Linear-Noisy Data

<w,x>+b=1

<w,x>+b=0

Class 1 = +1 zone

Typically, SVs are laying on the planes…

Fundamentals: Support Vector Machines
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Fundamentals: Support Vector Machines (C-SVM)

Figure : Linear-Noisy Data
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Fundamentals: Support Vector Machines (C-SVM)
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Figure : Linear-Noisy Data
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Fundamentals: Support Vector Machines (C-SVM)
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Use optimization libraries (such as Matlab libraries, MOSEK, etc) to solve 
this quadratic  constraint optimization problem.

Or… Use sequential minimal optimization (SMO) method.
Or… Use gradient descent J
Or… 
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Fundamentals: Support Vector Machines: Nonlinear Data

Problem: SVM is designed to separate
linear data, so how can we apply 

SVM onto non-linear data?

x2

x1
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Fundamentals: Support Vector Machines: Nonlinear Data

g(.)

g(.)

(b):Transformed Linearly 
Separable Data in 
3dimensional space

X1

X2

X3

x2

x1

Figure: Transforming the Data by using the transformation function g(.)

(a):Nonlinear Data in
2 dimensional space
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Fundamentals: Support Vector Machines: Kernel Functions
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Fundamentals: Support Vector Machines: Kernel Functions

1
( ) sgn
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i i i
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( , ) ,K = á ñi ix x g(x) g(x )

Kernel function

DEFINITION:
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Fundamentals: Support Vector Machines: Kernel Trick

1
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Kernel function

Decision Function (New form) :

Kernel trick!
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Fundamentals: Kernel Functions

( , ) ,K º á ñi ix x g(x) g(x )

( , ) ( , )i j j iK K=x x x x
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Fundamentals: Kernel Functions

( , ) ,K º á ñi ix x g(x) g(x )

( , ) ( , )i j j iK K=x x x x

0)()(),( ³òò dxdyygxgyxK

Mercer Kernels: Mercer Condition
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Fundamentals: Support Vector Machines (C-SVM)

φ(α) = αi
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Use optimization libraries (such as Matlab libraries, MOSEK, etc) to solve 
this quadratic  constraint optimization problem.

Or… Use sequential minimal optimization (SMO) method.

φ(α) = αi
i=1

l

∑ −
1
2

αiα j yi y j < g(xi ), g(xj) >
j=1

l

∑
i=1

l

∑
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Fundamentals: Kernel Function Examples
1. Polynomial Kernel Functions:

,( , ) ( )di
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á ñ
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2. Wavelet Kernel Functions:
2

2
1

( ) 1.75 exp
2

m
i ii i

i

x yx y
K Cos

a a=

æ öæ ö--æ öç ÷ç ÷= -ç ÷ ç ÷ç ÷è ø è øè ø
Õx,y

3. Gaussian Kernel Function: (Radial Basis Function)

2

2( , ) exp
2

i
iK

s

æ ö-
ç ÷= -
ç ÷
è ø

x x
x x



Lecture Notes for Computer Vision  Sedat Ozer

39

Fundamentals: Valid Kernel Properties

1 1 2 2( ) ( ) ( )K a K a K= +x,y x,y x,y

1. Linear combinations of Kernels

1 2, 0a a ³

2. Kernel Products

1 2( ) ( ) ( )K K K=x,y x,y x,y

3. Power Series Expansion:
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=
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Generalized Chebyshev Kernel Functions

Generalized Chebyshev Kernel Function:

0
( ) ( )

( )

n
T

j j
j
T T

K
m

==
- < >

å x y
x,y

x,y

Sedat OZER, M.Sc. Thesis, Univ. of Massachusetts, 2007 
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Multiple Kernel Learning

41

Classical SVM Multiple Kernel Learning

• Kernel functions (Kr ) are given already. 
• What if they are not the optimal kernel functions spanning the optimal solution space?
• Is it not costly to use two-step optimization? (Especially in the big data era)?
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Similarity Domains Machine (2018)

42Paper: Sedat Ozer, “Similarity Domains Machine for Scale-invariant and Sparse Shape Modeling” 
IEEE Transactions on Image Processing (2018-2019)
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What is new?
• Kernel parameters are hard to choose from and can drastically change the classification results 

depending on the dataset. SDM solves that issue analytically by assigning different kernel 
parameters to different SVs!

• SDM uses Gaussian kernel as default! 

• Define a local similarity domain in the feature space defined by the kernel parameter. 

• Put each SV at the center of those local similarity domains! 
• (Each SV has its own kernel parameter)

• Use only one cost function to be optimized. No need to two-step optimization.

• Visualize and explain the kernel parameters for the first time without requiring an additional tool!

43
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SDM SVM

SVMSVMSVM

Training Data

Image source: [Ozer 2018]

Comparison: SVM vs SDM

SVM with Gaussian kernel at different kernel parameters
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Kernel parameters? What are they looking like?

45

Image source: [Ozer 2018, “Similarity Domains Machine]

Original (binary) image:

All the computed kernel parameters are visualized All of the foreground kernel params are visualized

r2 =a!2
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Can we use these parameters and do something 
with them?

46
Image source: Sedat Ozer
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Scale-invariance in machine learning parameters? 
Huh?

47
Image source: [Ozer 2018]

Domain adaptation
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Scale-invariance in machine learning parameters? 
Huh?

48

Image source: Sedat Ozer

What we can do with scale-invariant machine learning algorithm: SDM results. 

106x106 image

115x115 image1000x1000 background Scale (S=3) Scale (S=5) Scale (S=10.75)
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How about computation time?

• SDM has multiple optimization techniques. 
• Some focused on speed and some focused on accuracy!

• SDM beats the best SVM implementations in terms of the 
computation time with particular optimization techniques while 
maintaining high accuracy! 

49
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Summary 

• SVM is, fundamentally, a binary classifier.

• SVs are the training vectors that have nonzero alfa values.

• SVM is still one of the state of the art learning algorithms among the “shallow” techniques. J

• SVM idea has been heavily modified for different applications and purposes. Many versions are 
available. (See Similarity Domains Machine for example J)

50


