Introduction to Computer Vision

Introduction to Neural Networks: Part2

Dr. Sedat Ozer




Use of Python

* Both GPU and CPU has parallelization instructions and many Python
built-in functions supports that.

e Use built-in functions for matrix (or vector) operations and avoid
using for loops in your code whenever you can!




Cost function and GD implementation

Remember the loss for single sample:
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Implement all that:

Cost Function:
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For i=1 tom
zO = wix® + b

J +=—[yPloga®#1 - y®)log(1 — a®)]

dz® = g® —y®
dw, += xV dz®)
dw, += x{P dz®
db += dz®

J =]J]/m; dw; = dw;/m ;

dw,= dw,/m; db= db/m

wii= w; — «<dw,
w,' = w, — <dw,
b'=b - xdb
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Lets Re-implement the Logistic Regression

SoINJeaJ

samples
Remember: X m= [xl Ixm] l ={yl,}’2,...,}’rﬂ
\ (Training) Data

— [zl][] [zm] =WTX +[b, b, ...,h] —) A= [al][...][am] 6(Z)
Implementation for Z: Z=np.dot(w. T, X)+b
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Note that in this particular example, the output is a vector. Therefore, the matrix Z (thus, the matrix A) becomes a vector.



A Better Implementation in Python

One iteration of gradient descent

J=0; dw,=0; dw,=0; db=0
For i=1 tom
zO = wixO + b
a® = oz
J +=—[yDloga®#1 — y®)log(1 — a®)]
dz® = a® —y®
dw, += x{ dz®
dw, += x5 dz®
db += dz®
J =]J]/m; dw; = dw;/m ;
dw,= dw,/m; db= db/m
wii= w; — «<dw,
w,' = w, — <dw,
b:=b - «db

One iteration of gradient descent

Z = w'X+b

A =0(2Z)

dZ=A-Y
dw=(1/m)XdZT"

db = (1/m)np.sum(dZ)
W= w - «dw
b:=b - «db
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III

Neural “Networks”




Neural Networks

* So far, we have seen only a “single neuron” (with two models)!
* Linear model
* Logistic regression model

* The performance of a single unit (single neuron) is limited!

* Higher performance can be achieved by forming a network of
multiple neurons.
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A Neuron vs. A Neural Network
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A 2- Iayer FC-NN Example:
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Each layer has its own weights and

bias values. So... the k" layer would
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The Weight Matrix for the entire layer 1:
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W13 W23 W;? Wf W53 3" unitin L1 (wy

3x5

WL is a (1x3) matrix

WUllis a (3x5) matrix,

bl is a (3x1) vector

(i.e., a row vector),
b2l is a (1x1) vector

(Reads: the weight vector of the 1st unit at the first layer)
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What if | have more than 2 classes?

In logistic regression we assumed that we had only two classes: Class 0 & Class 1.

What if | have more than two classes?

One typical approach is: using one vs. all approach.

* (where, for example, you first consider Class 0 as one class and the combination of all the
other classes as the “other” class. Then you consider Class 1 as one class and the
combination of all the other classes as the “other class”,...)

Another approach might be using Softmax Regression instead of logistic
regression.

* Define a new cost function and derive all the weight update rules according to that cost
function.
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Softmax Regression

 Remember Logistic Regression: We had only two classes (Class 0 and
Class 1, i.e., y"e{0,1}).

* Softmax Regression is the case where we have K classes ( K> 2 ) such
that: yWe{1,...,K}.

 Sigmoid function is no longer being used.
* Now the output can take K different values rather than just two.

eZi

K m
— 5. — — 1
a=9i=9) =5z L@y)=- ) ylog@) Jw,b) =— > £ y)
j=1 j=1

j=1

Softmax Activation Function Softmax Loss Function Softmax Cost Function




Lets have a look at an example:

school quality

location (zip): x; <
income — wealth: x, al amenities

house size: x,

walkability

Vi
(market popularity)

Discrete value: popular/ not

# bedrooms: xx

# bathrooms: x¢ family size

n: total number of features = 6




A Fully Connected (FC) Neural Network (6 inputs, 1 output)

n: total number of features = 6 -




A Fully Connected (FC) Neural Network (6 inputs, 2 outputs)

it” (a neuron)

n: total number of features =6



A 2-layer FC-NN Example:
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A 2-layer FC-NN Example:

x = al0l alll
X1
’ 5; — a[2]
X2
. 1
X4 /Output Layer
z/// (L2
*s Hidden Layer
Input Layer (L1)
(LO) X
- N
x]_ e [1]\
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zlll= Wil x + bl =| wi wi wi wf wé || x; | + bgl] =
wi ws w3 wiwd || x, plil
3
3x5 [ xSJ - 3x1
5x1
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3x1

Steps to compute the output for logistic
regression for one input sample:

ZUll =W x 4 b1l
alll = g(z!1)

7121 = W2l gl1] 4 pl2]

al?l = g(z12))
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Computation with less for-loop ,umms.

y

X =| x4 .. ,m)

I
] |
Alll = a1l 4[11@) .. gl1lm)

(Z!1] has the same shape as Al'])




Another 2 layer FC NN Example o
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A 2 layer NN with 6 inputs and 2 outputs 19
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Common Activation Functions
a(z) a(z)
/ » 7
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Sigmoid: a = g(z) = 1+ -2 ReLU: a = g(z) = max(0, z)
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tanh: q=g(z) = e’ —e Leaky ReLU: a = g(z) = max(0.01z, z)
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Activation Function as: g(z)
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With or Without the Activation Function

Lets have a look at the case where we do not use any activation function. (That is also equivalent to setting g (z!!!) = z!1)

zU =Wl x + bl ZU11 =Wl x + pll]

alll =g(zI1) qlll = Zl1]

2121 = W21 alll 4 pl2] 7121 = W21 z[1] 4 pl2]

al?l =g (z1%)) a2l = 7121 = W21 z[1] 4 pl2]

$ = al?l= [af ] = [ J = W [WlIx + blll]+ bl2!
— WE2IWIx + W2 blll4 b2

The output is always a linear function of the input!
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Derivatives for the Activation Functions

* Remember that the updating process of the parameters depends on
the derivatives!

* That also depends on the derivative of the chosen activation function!

* (we used sigmoid function previously in our logistic regression
implementation).




Derivatives for the Activation Functions

a(z)

S
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1
14+e72

Sigmoid: a = g(z) =
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ReLLU: a = g(z) = max(0,2)

0,if z<0
d )
g’(Z) = Z(Z) = 1’ le > 0
‘ undefined,if z =0

a(z)

» Z

Leaky ReLU: a = g(z) = max(0.01z, 2)
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db2l = —np. sum(dZ'¥, axis = 1, keepdims = True)

1
db!l = —np.sum(dz), axis = 1, keepdims = True) 25
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