
Introduction to Computer Vision

Dr. Sedat Ozer

Introduction to Neural Networks: Part2

Use of Python

• Both GPU and CPU has parallelization instructions and many Python
built-in functions supports that.
• Use built-in functions for matrix (or vector) operations and avoid

using for loops in your code whenever you can!

2
Lecture Notes for Computer Vision Sedat Ozer

Cost function and GD implementation

3

! ", $ =
1
'
(
)*+

,

ℒ(/0) , 0()))

2ℒ(3,4)

25+

= 61(7 − 0)

2ℒ(3,4)

29
= 7 − 0

2ℒ(3,4)

25:

= 62(7 − 0)

<! ", $
<"1

=
1
'
(
)*+

,
<ℒ a

(>), 0
(>)

<"1

<! ", $
<"2

=
1
'
(
)*+

,
<ℒ a

(>), 0
(>)

<"2

<! ", $
<$

=
1
'
(
)*+

,
<ℒ a

(>), 0
(>)

<$

Remember the loss for single sample:

Cost Function:

Final derivatives to be used:
! 	�� d"1	���d"2	���d$ 	�� ∝=	0.00001

��i	��+���

E
>
= FGH

i
+ $

7
>
= J E

(>)

! += −[0())log 7) �(1 − 0())) log(1 − 7))]
dE

>
= 7

>
−0())

d"1 += 6+
()) dE

>

d"2 += 6:
()) dE

>

d$ += dE
>

! 	�!����d"1 	�d"1�����
d"2	�d"2����d$	 d$��
"1�	�"1 ∝ d"1
"2�	�"2 ∝ d"2
$�	�b ∝ db

Implement all that:

x2

x1

/0
w1

w2

b

z=wTx + b J (z)

Lecture Notes for Computer Vision Sedat Ozer

Lets Re-implement the Logistic Regression

4

Xnxm=
x1 xm… features

samples

Remember:

Z= z1 zm…
= #$% + [(, (, … , (]

1xm

Implementation for Z: Z =
)�	(�+�������

A= a1 am…
=-(Z)

Y= y1
, y2

, …,ym

Note that in this particular example, the output is a vector. Therefore, the matrix Z (thus, the matrix A) becomes a vector.

Lecture Notes for Computer Vision Sedat Ozer

(Training) Data

A Better Implementation in Python

5

! 	�� d#1	���d#2	���d& 	�

��i	��+���

(
)
= +,-

i
+ &

/
)
= 0((

()))

! += −[5(6)log / 6 �(1 − 5(6)) log(1 − / 6)]

d(
)
= /

)
−5(6)

d#1 += ;<
(6)
d(

)

d#2 += ;=
(6)
d(

)

d& += d(
)

! 	�!����d#1 	�d#1�����
d#2	�d#2����d&	 d&��
#1�	�#1 ∝ d#1

#2�	�#2 ∝ d#2

&�	�b ∝ db

@ = +,A + &
A			= 0(@)

dZ = A	– Y

d +=	(1/m)X dZT

dK =	(1/m)np.sum(dZ)

+�	�+ ∝ d+

K�	�K ∝ dK

One iteration of gradient descent One iteration of gradient descent

Lecture Notes for Computer Vision Sedat Ozer

Neural “Networks”

6
Lecture Notes for Computer Vision Sedat Ozer

Neural Networks

• So far, we have seen only a “single neuron” (with two models)!
• Linear model
• Logistic regression model

• The performance of a single unit (single neuron) is limited!
• Higher performance can be achieved by forming a network of

multiple neurons.

7
Lecture Notes for Computer Vision Sedat Ozer

!"
!#
!$

%&

x

w

b

' =)*+ + - . = /(') ℒ(., &)

x

4["]

7["]
'["] = 4["]+ + 7["] 8["] = /(9["]) '[#] = 4[#]:["] + -[#] .[#] = /('[#]) ℒ(.[#], &)

!"
!#
!$

%&

;[#]

-[#]

A Neuron vs. A Neural Network

<=>.?@

<=>.?@
Lecture Notes for Computer Vision Sedat Ozer

A 2-layer FC-NN Example:

9

!"

!#

!$

!%

&'!(

Input Layer
(L0)

Hidden Layer
(L1)

Output Layer
(L2)

a[1]x = a[0]

&' = a[2]

Each layer has its own weights and
bias values. So… the kth layer would
have: W[k] and b[k]

W[1] is a (3x5) matrix,
b[1] is a (3x1) vector

W[2] is a (1x3) matrix
(i.e., a row vector),
b[2] is a (1x1) vector

&' = a[2]=)"
[#]

1x1

&'1
1x1

=

-"["]=

.""

.#"

.("

.$"

.%"
5x1

a vector

Layer

Unit

(Reads: the weight vector of the 1st unit at the first layer)

W[1] =
."" .#" .(" .$" .%"
."# .## .(# .$# .%#
."(.#(.((.$(.%(

1st unit in L1 (-"" /)

2nd unit in L1 (-#
" /)

3rd unit in L1 (-(
" /)

3x5

The Weight Matrix for the entire layer 1:

a[1]=

)"["]

)#["]
)(["]

3x1

Lecture Notes for Computer Vision Sedat Ozer

[1]

What if I have more than 2 classes?
• In logistic regression we assumed that we had only two classes: Class 0 & Class 1.
• What if I have more than two classes?
• One typical approach is: using one vs. all approach.

• (where, for example, you first consider Class 0 as one class and the combination of all the
other classes as the “other” class. Then you consider Class 1 as one class and the
combination of all the other classes as the “other class”,...)

• Another approach might be using Softmax Regression instead of logistic
regression.
• Define a new cost function and derive all the weight update rules according to that cost

function.

10
Lecture Notes for Computer Vision Sedat Ozer

Softmax Regression

• Remember Logistic Regression: We had only two classes (Class 0 and
Class 1, i.e., y(i)∈{0,1}).
• Softmax Regression is the case where we have K classes (K > 2) such

that: y(i)∈{1,…,K}.
• Sigmoid function is no longer being used.
• Now the output can take K different values rather than just two.

11

" #, % = 1
()

*+,

-
ℒ(a(1), 3(1))ℒ a, 3 = −)

*+,

K
31567(8*)89 = :39 = 7(;9) =

<=>
∑*+,@ <=A

Softmax Loss Function Softmax Cost FunctionSoftmax Activation Function

Lecture Notes for Computer Vision Sedat Ozer

Lets have a look at an example:

13

!"#$%&"' (&) : +,

&'#"-. − 0.$!%ℎ: +2

ℎ"34. 4&(.: +5
7.89""-4: +:

7$%ℎ9""-4: +; <$-&!= 4&(.

n: total number of features = 6

!"#$! $-.'&%&.4

4#ℎ""! >3$!&%=

0$!?$7&!&%=

)")3!$%&"': +@ A=1
(-$9?.%)")3!$9&%=)
Discrete value: popular/ not

Lecture Notes for Computer Vision Sedat Ozer

A Fully Connected (FC) Neural Network (6 inputs, 1 output)

14

!"

!#

!$
!%

&'

!(

n: total number of features = 6

!)

Lecture Notes for Computer Vision Sedat Ozer

A Fully Connected (FC) Neural Network (6 inputs, 2 outputs)

15

!"

!#

!$
!%

&'1

!(

n: total number of features = 6

!)
&'2

a “unit” (a neuron)

Lecture Notes for Computer Vision Sedat Ozer

A 2-layer FC-NN Example:

16

!"

!#

!$

!%

&'!(

Input Layer
(L0)

Hidden Layer
(L1)

Output Layer
(L2)

a[1]x = a[0]

&' = a[2]

a[1] =

)"["]

)#["]
)(["]

3x1

&' = a[2]=)"[#]
1x1

&'1
1x1

=

W[1] =
-"" -#" -(" -$" -%"
-"# -## -(# -$# -%#
-"(-#(-((-$(-%(

3x5

The Weight Matrix for the entire layer 1:

=
.(0"["])
.(0#["])
.(0(["])

3x1

= .(z[1])
2"["]

2#["]
2(["]

-"" -#" -(" -$" -%"
-"# -## -(# -$# -%#
-"(-#(-((-$(-%(

!1
!2
!3
!4
!5

+ =
0"["]

0#["]
0(["] 3x13x1

5x1
3x5

x

z[1]= W[1] x + b[1] =

Lecture Notes for Computer Vision Sedat Ozer

17

!"

!#

!$

!%

&'!(

Input Layer
(L0)

Hidden Layer
(L1)

Output Layer
(L2)

a[1]x = a[0]

&' = a[2]

a[1] =

)"["]

)#["]
)(["]

3x1

&' = a[2]=)"[#]
1x1

&'1
1x1

=

-"["]

-#["]
-(["]

z[1]= W[1] x + b[1] =
."" .#" .(" .$" .%"
."# .## .(# .$# .%#
."(.#(.((.$(.%(

!1
!2
!3
!4
!5

+ =
3"["]

3#["]
3(["] 3x13x1

5x1
3x5

=
4(3"["])
4(3#["])
4(3(["])

3x1

= 4(z[1])

x

z[1] =W[1] x + b[1]

a[1] = 4(z[1])

z[2] = W[2] a[1] + b[2]

a[2] = 4(z[2])

Steps to compute the output for logistic
regression for one input sample:

Lecture Notes for Computer Vision Sedat Ozer

A 2-layer FC-NN Example:

Computation with less for-loop

18

for i = 1 to m
! " ($) = ' " (($) + * "

+ " ($) = ,(! " $)
- . ($) = ' . + " ($) + / .

0 . ($) = ,(- . $)

1 " = 2 " 3 + * "

4 " = ,(1 ")
1 . = 2 . 4 " + * .

4 . = ,(1 .)

…5 = 6(") 6(.) 6(7)

0["](.)A["] = 0" 0["](7)…

m = number of training samples

6"
6.
6;

<=

Algorithm 1:

Algorithm 2:

(> " has the same shape as A["]) Lecture Notes for Computer Vision Sedat Ozer

Another 2 layer FC NN Example

19

!"

!#

!$

!%

&"["]

)*1

!+

!,

)*2

Input Layer
With 6 features

Hidden Layer
with 4 units

Output Layer
with 2 units

a[1]x = a[0]

)- = a[2]

&#["]

&,["]

&$["]

&"[#]

&#[#]

A 2 layer NN with 6 inputs and 2 outputs

a[1]=

&"["]

&#["]
&,["]

&$["]
4x1

)- = a[2]= &"[#]

&#[#]2x1

)*1
)*2

2x1

=

QUESTION: What are the dims of W[1] and W[2]?
Dims = (a x b); a=? b=?

a=4 and b=6 for W[1]

Lecture Notes for Computer Vision Sedat Ozer

20

z
Sigmoid:

z

z

z

Common Activation Functions

ReLU:

tanh: Leaky ReLU:

Lecture Notes for Computer Vision Sedat Ozer

a(z)
a(z)

! = # $ = max(0, $)

! = # $ = ,- − ,/-
,- + ,/-

! = # $ = max(0.01$, $)

! = # $ = 1
1 + ,/-

a(z)
a(z)

Activation Function as: g(z)

21

! " = $ " % + ' "

(" =)(! ")
! , = $, (" + ' ,

(, =)(! ,)

Algorithm 2:

! " = $ " % + ' "

(" = -(! ")
! , = $, (" + ' ,

(, = -(! ,)

Algorithm 2:

Lecture Notes for Computer Vision Sedat Ozer

With or Without the Activation Function

22

Lets have a look at the case where we do not use any activation function. (That is also equivalent to setting !(z[1]) = z[1])

#$ = a[2]= %&[(]
1x1

#$1
1x1

=

z[1] =W[1] x + b[1]

a[1] =!(z[1])

z[2] = W[2] a[1] + b[2]

a[2] =!(z[2])

#$ = z[2]= W x + b

z[1] =W[1] x + b[1]

a[1] = z[1]

z[2] = W[2] z[1] + b[2]

a[2] = z[2] = W[2] z[1] + b[2]

= W[2] [W[1] x + b[1]]+ b[2]

= W[2] W[1] x + W[2] b[1]+ b[2]

= W x + b

The output is always a linear function of the input!

Lecture Notes for Computer Vision Sedat Ozer

+&
+(
+,

#$

• Remember that the updating process of the parameters depends on
the derivatives!
• That also depends on the derivative of the chosen activation function!
• (we used sigmoid function previously in our logistic regression

implementation).

23
Lecture Notes for Computer Vision Sedat Ozer

Derivatives for the Activation Functions

24

a(z)

z

z

a(z)

z

a(z)

z

a(z)Derivatives for the Activation Functions

ReLU: ! = # $ = max(0, $)

tanh: ! = # $ = ,- − ,/-
,- + ,/-

Leaky ReLU: ! = # $ = max(0.01$, $)

Sigmoid: ! = # $ = 1
1 + ,/-

#3 - = 4# $
4$ = # $ (1 − # $) = !(1 − !)

#3 - = 4# $
4$ == (1 − (tanh $)2) = (1 − !2)

#3 - = 4# $
4$ =

0, 9: $ < 0
1, 9: $ > 0

=>4,:9>,4, 9: $ = 0

#3 - = 4# $
4$ = 0.01, 9: $ < 0

1, 9: $ ≥ 0
Lecture Notes for Computer Vision Sedat Ozer

25

![#]% + '[#] = ([#]

%

![#]

'[#]

) (# = +[#] ℒ(+[.], y)![.]+[#] + '[.] = ([.]) (. = +[.]

![.]

'[.]

2([.] = +[.] − 4

2![.] = 2([.]+ # 5

2'[.] = 2([.]

2([#] = ! . 62([.] ∗ 8[#]′(z #)

2![#] = 2([#]%6

2'[#] = 2([#]

2;[.] = <[.] − =

2![.] =
1
?
2;[.]< # 5

2'[.] =
1
?
@A. CD?(2; . , +%EC = 1, FGGA2E?C = HIDG)

2;[#] = ! . 62;[.] ∗ 8[#]′(Z #)

2![#] =
1
?
2;[#]K6

2'[#] =
1
?
@A. CD?(2; # , +%EC = 1, FGGA2E?C = HIDG)

Lecture Notes for Computer Vision Sedat Ozer

%#
%.
%L

M4

