Introduction to Computer Vision Introduction to Neural Networks: Part2

Dr. Sedat Ozer

Use of Python

- Both GPU and CPU has parallelization instructions and many Python built-in functions supports that.
- Use built-in functions for matrix (or vector) operations and avoid using for loops in your code whenever you can!

Lets Re-implement the Logistic Regression

Implementation for **Z**: $\mathbf{Z} = np. dot(\mathbf{w}, T, X) + b$

Note that in this particular example, the output is a vector. Therefore, the matrix Z (thus, the matrix A) becomes a vector.

Lecture Notes for Computer Vision Sedat (

A Better Implementation in Python

One iteration of gradient descent	One iteration of gradient descent
J=0: $dw_1=0$: $dw_2=0$: $db=0$ For i=1 to m $z^{(i)} = \mathbf{w}^T \mathbf{x}^{(i)} + b$ $a^{(i)} = \sigma(z^{(i))}$ $J += -[y^{(i)}\log a^{(i)} + (1 - y^{(i)})\log(1 - a^{(i)})]$ $dz^{(i)} = a^{(i)} - y^{(i)}$ $dw_1 += x_1^{(i)} dz^{(i)}$ $dw_2 += x_2^{(i)} dz^{(i)}$ $db += dz^{(i)}$ $J = J/m$: $dw_1 = dw_1/m$; $dw_2 = dw_2/m$; $db = db/m$ $w_1 := w_1 - \propto dw_1$ $w_2 := w_2 - \propto dw_2$ $b := b - \propto db$	Z = $\mathbf{w}^T X + b$ A = $\sigma(\mathbf{Z})$ dZ = A - Y d $\mathbf{w} = (1/m)X dZ^T$ d $\mathbf{b} = (1/m)np.sum(dZ)$ $\mathbf{w} := \mathbf{w} - \propto d\mathbf{w}$ $\mathbf{b} := \mathbf{b} - \propto d\mathbf{b}$

Neural "Networks"

Neural Networks

- So far, we have seen only a "single neuron" (with two models)!
 - Linear model
 - Logistic regression model
- The performance of a single unit (single neuron) is limited!
- Higher performance can be achieved by forming a network of multiple neurons.

A Neuron vs. A Neural Network

A 2-layer FC-NN Example:

Each layer has its own weights and bias values. So... the k^{th} layer would have: $\mathbf{W}^{[k]}$ and $\mathbf{b}^{[k]}$

(Reads: the weight vector of the 1st unit at the first layer)

What if I have more than 2 classes?

- In logistic regression we assumed that we had only two classes: Class 0 & Class 1.
- What if I have more than two classes?
- One typical approach is: using one vs. all approach.
 - (where, for example, you first consider Class 0 as one class and the combination of all the other classes as the "other" class. Then you consider Class 1 as one class and the combination of all the other classes as the "other class",...)
- Another approach might be using **Softmax Regression** instead of logistic regression.
 - Define a new cost function and derive all the weight update rules according to that cost function.

Softmax Regression

- Remember Logistic Regression: We had only two classes (Class 0 and Class 1, i.e., y⁽ⁱ⁾∈{0,1}).
- Softmax Regression is the case where we have K classes (K > 2) such that: y⁽ⁱ⁾∈{1,...,K}.
- Sigmoid function is no longer being used.
- Now the output can take *K* different values rather than just two.

$$a_{i} = \hat{y}_{i} = g(z_{i}) = \frac{e^{z_{i}}}{\sum_{j=1}^{K} e^{z_{j}}} \qquad \qquad \mathcal{L}(a, y) = -\sum_{j=1}^{K} y_{j} log(a_{j}) \qquad \qquad J(w, b) = \frac{1}{m} \sum_{j=1}^{m} \mathcal{L}(a^{(j)}, y^{(j)})$$

Softmax Activation Function

Softmax Loss Function

Softmax Cost Function

Lets have a look at an example:

A Fully Connected (FC) Neural Network (6 inputs, 1 output)

n: total number of features = 6

A Fully Connected (FC) Neural Network (6 inputs, 2 outputs)

Steps to compute the output for logistic regression for **one input sample**:

> $z^{[1]} = W^{[1]} x + b^{[1]}$ $a^{[1]} = \sigma(z^{[1]})$ $z^{[2]} = W^{[2]} a^{[1]} + b^{[2]}$ $\mathbf{a}^{[2]} = \sigma(\mathbf{z}^{[2]})$ $\hat{y} = \mathbf{a}^{[2]} = \left(a_1^{[2]}\right) = \left(\hat{y}_1\right)_{1\times 1}$

Computation with less for-loop

Algorithm 1:

for i = 1 to m $z^{[1](i)} = W^{[1]}x^{(i)} + b^{[1]}$ $a^{[1](i)} = \sigma(z^{[1](i)})$ $z^{[2](i)} = W^{[2]}a^{[1](i)} + b^{[2]}$ $a^{[2](i)} = \sigma(z^{[2](i)})$

Algorithm 2:

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$
$$A^{[1]} = \sigma(Z^{[1]})$$
$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$$
$$A^{[2]} = \sigma(Z^{[2]})$$

m = number of training samples

A 2 layer NN with 6 inputs and 2 outputs

Common Activation Functions

Activation Function as: g(z)

Algorithm 2:

 $Z^{[1]} = W^{[1]}X + b^{[1]}$ $A^{[1]} = \sigma(Z^{[1]})$ $Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$ $A^{[2]} = \sigma(Z^{[2]})$

Algorithm 2:

 $Z^{[1]} = W^{[1]}X + b^{[1]}$ $A^{[1]} = g(Z^{[1]})$ $Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$ $A^{[2]} = g(Z^{[2]})$

With or Without the Activation Function

Lets have a look at the case where we do not use any activation function. (That is also equivalent to setting $g(\mathbf{z}^{[1]}) = \mathbf{z}^{[1]}$)

 $z^{[1]} = W^{[1]} x + b^{[1]}$ $a^{[1]} = g(z^{[1]})$ $z^{[2]} = W^{[2]} a^{[1]} + b^{[2]}$ $a^{[2]} = g(z^{[2]})$ $\hat{y} = a^{[2]} = \left[a_1^{[2]}\right] = \left[\hat{y}_1\right]_{1\times 1}$

The output is always a linear function of the input!

Derivatives for the Activation Functions

- Remember that the updating process of the parameters depends on the derivatives!
- That also depends on the derivative of the chosen activation function!
 - (we used sigmoid function previously in our logistic regression implementation).

Derivatives for the Activation Functions

 $g'^{(z)} = \frac{dg(z)}{dz} = \begin{cases} 0.01, & \text{if } z < 0\\ 1, & \text{if } z \ge 0 \end{cases}$

$$W^{[2]}_{b^{[2]}} = b^{[2]}_{b^{[2]}} + c^{[2]}_{b^{[2]}} + c^{[2]}_{a^{[2]} + b^{[2]} = z^{[2]}} + c^{[2]}_{a^{[2]} + c^{[2]} + c^{[2$$