
Introduction to Computer Vision

Dr. Sedat Ozer

Introduction to Deep Learning



Overview
• Linear Classifier,
• Logistic Regression,
• Loss Function for Logistic Regression
• Cost Function for Logistic Regression
• Gradient Descent Algorithm
• Computation Graph
• Derivatives for Logistic Regression
• Implementing Logistic Regression in Python
• Softmax Regression
• Neural Networks
• Fully Connected (FC) Neural Network
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Introduction

f(w,D) !" = yxobservation

Given observation (i.e., the data), derive a rule that can imitate the mechanism generating the observation: 
Model that mechanism as f() and then find (or fit) a function f() to mimic the system.

Xnxm=
x1 xm

…
… y1xm=

n (or nx): number of features
m: number of total observations (samples)

All the outputsAll the features from all the samples 

Each “column” in Xnxm
represents a sample”

Note: Each sample can be 
written as a row vector as well.

y1
, y2

, …,ym

features

Samples (observations)

Model output

True (expected) output
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Introduction

What is supervised learning?

D={(x(1), y(1)), (x(2), y(2)), …, (x(m),y(m))} =========>  w=g(X,y)

Find the model parameters as a 
function of the data that fit the data 
the best.

f(w,D) !" = yxobservation

Given observation (i.e., the data), derive a rule that can imitate the mechanism generating the observation: 
find the function f() 

Model output (predicted label)

True or expected output (true label, 
ground truth, the given labels, etc.)

Learn from the data with the labels.
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0

How to “separate” this data? 

(how to categorize, classify this data being 
yellow or blue?)

Fundamentals: Classification

x2 (house size)

x1
(population)

Sample_1 (x(1))
Sample_2 (x(2))

Sample_m (x(m))
… Yellow dot (  ): popular market

Blue dot (  ): not popular market

Problem: Find an algorithm to classify the given data of a house coming from a popular market or 
from a non-popular market!
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0

By drawing this line?

Fundamentals: Classification

x2 (house size)

x1
(population)

Yellow dot (  ): popular market
Blue dot (  ): not popular market
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0

How to “separate” this data?

By drawing this line?

Or this one?

Fundamentals: Classification

x2 (house size)

x1
(population)

Yellow dot (  ): popular market
Blue dot (  ): not popular market
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0

By drawing this line? 

Or this one?

Fundamentals: Classification

x2 (house size)

x1
(population)

Errmm, c�mon!
Does it really matter?
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Linear Classifier

Line equation for the above example is: 
f(x) = w1x1 + w2x2 + b 

= < w , x > + b 
= wTx + b               Alternative representations!
= w . x + b

f(x) < threshold: (-1 class) 
f(x) > threshold  (+1 class)

w: the weights vector - a (2x1) column vector,
x: a training sample - a (2x1) column vector,
b: the bias value – a scalar (1x1) value.

+
x2

x1

!"(i)= 

x(i)

w1

w2

b

0 x2 (house size)

x 1
(p

op
ul

at
io

n)
i=1,2,3,…,m. (sample number)

n=2 (number of features)

+1,   if f(x(i)) > 0
-1,   otherwise

f(x(i))

Yellow dot (  ): popular market = 1
Blue dot (  ): not popular market = -1
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Training vs. testing – on the board.
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Axon

Terminal Branches 
of AxonDendrites

The (Biological) Analogy
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The (Biological) Analogy
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Axon

Terminal Branches 
of AxonDendrites

S

x1

x2
w1

w2

wn
xn

x3 w3
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Logistic Regression
Given the input vector x, compute the output probability !" such that:
• !" = P(y=1 | x) This term can be read in many (similar) ways. One way to read: the probability of the 

output y being 1, while the the input data (or features) are given as x.

• Since the output prediction !" is now a probabilistic term, its value has to be bounded between 0 and 1. 
• Logistic function: #(z) does that job for us. (Also known as Sigmoid function)

13The output value of logistic function is always bounded between 0 and 1.

Logistic function

#(z)

z
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Logistic Regression
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Remember the line equation: 
!" = f(x) 

f(x) = w1x1 + w2x2 + b 
= wTx + b

x = 
x$
x%

2x1

w = 
w$
w% 2x1

Becomes: '(f(x))+

x2

x1

!"

w1

w2

b

+

x2

x1

!"

w1

w2

b

f(x) x2

x1

!"
w1

w2

b

z=wTx + b ' (z)

Two different illustrative representations of the “same model”

Now in logistic regression: 
!" = '(z) 
z = f(x)

f(x) = w1x1 + w2x2 + b
= wTx + b

!" = '(z) = '(f(x)) = '(wTx + b)

And…. '(z) = $
$()*+ =  $

$()* wTx + b
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How to find the correct line?
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0 x2 (house size)

x 1
(p

op
ul

at
io

n)

0 x2 (house size)

x 1
(p

op
ul

at
io

n)

Iteration 1
(Random initialization)
Training Error: 9 samples 
are  misclassified

0 x2 (house size)

x 1
(p

op
ul

at
io

n)

Iteration 10
Training Error: 3 samples 
are  misclassified  

Iteration 20
Training Error: 0 samples 
(No error! Yay!)
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Iterative computation of the parameters

• In the previous slide, we performed a form of optimization to find the 
better line (i.e., the better weights and the bias values) iteratively and 
intuitively. 
• Lets formalize that here next.

• We looked at a criteria to find better parameters (in the previous 
case, that was the total number of errors).
• We need a criteria for an algorithm to figure out how well the algorithm is 

doing at that current iteration (at that moment):
• Lets call that criteria a “cost function”!

• Example: Total number of errors

17
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Loss Function for Logistic Regression
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• We need a way to compare the output of the algorithm’s !" to the expected (true) output value y. The 

error can be measured in various ways mathematically. Lets define that error measure as “loss function”. 

• Here is an example of a loss (error) function for any given data sample:

• However this loss function does not work well for the main optimization algorithm that we will study 

next: gradient descent algorithm.

• For logistic regression algorithm, we will use the loss function below instead: 

ℒ(!" % , "(%)) = −"(%) log !" % − (1 − "(%)) log(1 − !" % )

ℒ( !" % , "(%)) = 0.5 !" % − " % 2
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Cost Function for Logistic Regression
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• Loss function ℒ(#$ % , $(%)) measures the error made for a single sample in the training 
data.

• Cost function ( ), * defines the global error over the entire dataset for the current 
parameters.

• Cost function for the logistic regression:

( ), * = 1
-.

%/0

1

ℒ( #$ % , $(%)) = − 1
-.

%/0

1

$(%) log #$ % + (1 − $(%)) log(1 − #$ % )
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Gradient Descent Algorithm
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!

" #, !

#

" #, ! = 1
'(

)*+

,

ℒ( /0 ) , 0())) = − 1
'(

)*+

,

/0 = 3 456 + ! = 1
1 + 89 4:6;<

Remember:

The goal in optimization is finding the ”optimal” 
model parameters: (w and b) that minimizes the 
given cost function. 
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Gradient Descent Update Rule
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! ", $ = 1
'(

)*+

,

ℒ( /0 ) , 0())) = − 1
'(

)*+

,

Parameters that we learn!

" ∶= " − 4 5! ", $
5"

$:= $ − 4 5! ", $
5$

Weight updating rule:

Bias updating rule:

4 : Learning rate

Partial derivatives
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Computation Graph

• We can represent the cost function as a graph.
• Useful to understand the deep learning essentials (forward and backward 

computations).
• Example: Consider the following cost function and define new variables 

22

! "1, "2, & = 4 ("1 + "2&) ( = "2& ) = "1 + ( ! = 4)

"1

"2

&
"2& = (

"1 + ( = ) 4) = !

Computation graph of J
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Computation Graph for Chain Rule
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!1

!2

$
!2$ = &

!1 + & = ' 4' = )

Computation graph of J

) !1, !2, $ = 4 (!1 + !2$)

+,
+- = 4

+,
+./

= +,
+-

+-
+./

= 4 x 1 = 4

+,
+0 = +,

+-
+-
+0 = 4 x 1 = 4

+,
+1 = +,

+0
+0
+1 = 4 x !2 = 4!2

+,
+.2

= +,
+0

+0
+.2

= 4 x b = 4b

34 !1=3, !2 = 2, $ = 5
+,
+- = 4

+,
+./

= +,
+-

+-
+./

= 4 x 1 = 4

+,
+0 = +,

+-
+-
+0 = 4 x 1 = 4

+,
+1 = +,

+0
+0
+1 = 4 x !2 = 4x2 = 8

+,
+.2

= +,
+0

+0
+.2

= 4 x b = 4x5=20
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Logistic Regression Computation Graph
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x2

x1

!"
w1

w2

b

wTx + b = z # (z)

For 1 (one) training example (say for ith sample):
• First compute z
• Then compute # (z)
• Then compute Loss: ℒ %, "
(later, we will also compute the cost for all the examples, however, here we consider only 
the one example case)  

' = )*+ + -
!" = % = #(')
ℒ %, " = −(" log(%) + (1 − ") log(1 − %))

5676 + 5878 + - = '

76
56
78
58
b

# ' = % ℒ(a, ")

Computation graph of ℒ

Remember:
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Derivatives for Logistic Regression
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!"#" + !%#% + & = (

#"
!"
#%
!%
b

* ( = + ℒ(a, 0)

Computation graph of ℒ

2ℒ(3,4)
25 = 64

5 + "64
"65

2ℒ(3,4)
27"

= 2ℒ
28 #1 = #1(+ − 0)

2ℒ(3,4)
28 = 2ℒ

25
25
28 = + − 0 2ℒ(3,4)

2; = 2ℒ
28 = + − 0

2ℒ(3,4)
27%

= 2ℒ
28 #2 = #2(+ − 0)
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Derivatives for Logistic Regression
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!"#" + !%#% + & = (

#"
!"
#%
!%
b

* ( = + ℒ(a, 0)

Computation graph of ℒ

#"
!"
#%
!%

b
Multiply

Multiply

Add ( Sigmoid +

An alternative representation of the computation graph of ℒ

…
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Cost function and implementation
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! ", $ =
1
'
(
)*+

,

ℒ(/0 ) , 0()))

2ℒ(3,4)

25+

= 61(7 − 0)

2ℒ(3,4)

29
= 7 − 0

2ℒ(3,4)

25:

= 62(7 − 0)

<! ", $
<"1

=
1
'
(
)*+

,
<ℒ a

(>), 0
(>)

<"1

<! ", $
<"2

=
1
'
(
)*+

,
<ℒ a

(>), 0
(>)

<"2

<! ", $
<$

=
1
'
(
)*+

,
<ℒ a

(>), 0
(>)

<$

Remember the loss for single sample:

Cost Function:

Final derivatives to be used:
! 	�� d"1	���d"2	���d$ 	�� ∝=	0.00001

��i	��+���

E
>
= FGH

i
+ $

7
>
= J E

(>)

! += − [0())log 7 ) ��(1 − 0())) log(1 − 7 ) )]
dE

>
= 7

>
−0())

d"1 += 6+
()) dE

>

d"2 += 6:
()) dE

>

d$ += dE
>

! 	�!������� d"1 	�d"1����
d"2	�d"2�����d$ 	 d$��
"1�	�"1  ∝ d"1
"2�	�"2  ∝ d"2
$�	�b  ∝ db

Implement all that:

x2

x1

/0
w1

w2

b

z=wTx + b J (z)
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Notes

This lecture has some content from Andrew Ng and Ulas Bagci.
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