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Announcements / Questions:

• HW1  - questions
• Class schedule - Fridays
• Midterm: Do we have a midterm?
• Paper presentations: Due today. Submit your presentation info at the 

link that was sent to you in my first email.
• Final project: Start working on your project early. Have frequent 

meetings with me especially if  you are aiming 
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Convolutions on RGB image
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6x6x3

3x3x3
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Multiple filters

=

6 x 6 x 3

4 x 4

3 x 3 x 3

∗

∗

3 x 3 x 3

=

4 x 4
n x n x nc f x f x nc x 2 ∗ = (n- f +1) x (n-f+1) x 2

Number of channels

Number of filters

Number of filters
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.

Multiple filters

=
6 x 6 x 3 4 x 4 x 2

3 x 3 x 3 x 2

∗

∗

2 filtersRGB Image Convolution Output

=

4 x 4 x 2

Convolution Output2-Conv. Ops.
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ReLU

.

A Convolutional Layer of CNN (ConvNet)

+ b1

+ b2

Convolution
Operation’s
Output

=
4 x 4 x 2

Convolutional Layer’s
Output (Activation maps)

Convolutional Layer Output: Activation_map = ReLU ($%&'()*+ ∗ -./0+1 + 3)
Output of a neuron in a FC NN:                  a = ReLU (5T7 + 3) in FC 
NN

Similar notation!
(but not equal)
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Input – Output Dimensions for lth Convolutional Layer

Filter size:![#]× ![#] × &'
[#()]× &'

[#] = +&,_./01,23456 × &'
[#]

Padding size: 7[#] x 7[#]

Stride size: 8[#] x 8[#]

9:
[;<=]>?@[;](A[;]

6[;]
+ 1 ×

&D
[#()] + 27[#] − ![#]

8[#]
+ 1 × &'

[#]Output dims (for one image) :

Input (One image): GH
[I(J] K GL

[I(J] x GM
[I(J] Output: GH

[I] K GL
[I] x GM

[I]

&N
[#] x &D

[#] x &'
[#]

The output dimensions for ^ input samples a[#]: ^ x &N
[#] x &D

[#] x &'
[#]

(Number of Weights = Filter size, Bias size: &'
[#])



Lecture Notes for Computer Vision  Sedat Ozer

Common Layer Types in a ConvNet

• Convolutional Layer (CONV)
• Fully Connected (FC, Dense)
• Locally Connected (not so commonly used!) 

• Pooling (POOL)
• Activation Layer 

• (Sometimes, activation function is considered as a separate layer)
…

We have already seen both CONV and FC layers!
For now, we will use only those two layer types mentioned above.

8

These three layers 
have parameters to be 
learned!

No learned parameters 
for these layers!
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Pooling layer: Max pooling

1 3 2 1

2 7 1 0

2 3 4 3

5 6 1 2

Filter size:  f =2
Stride size: s=2

Pooling is typically applied on each channel separately.

Output

Input

9
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Pooling layer: Max pooling

1 2 2 1 4
2 7 1 3 5
1 4 2 0 2
6 3 5 1 0
5 6 0 2 7

f=3
s=1

Input

Output
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Pooling layer: Average pooling

1 0 2 1

2 9 1 1

2 3 2 2

5 6 2 2
2

1.253

4

Filter size= 2 x 2
Stride: s = 2

Input

Output
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12
Source: Fei-Feli Li & Justin Johnson & Serena Yeung
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Summary of pooling

Hyperparameters:

f : filter size
s : stride
Max or Average pooling

f=2, s=2
f=3, s=2
p = 0

Input: !" x !$ x !%
&'()
* + 1 × !$ − /

0 + 1 × !%Output:
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Source: Fei-Feli Li & Justin Johnson & Serena Yeung
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Source: Fei-Feli Li & Justin Johnson & Serena Yeung



Lecture Notes for Computer Vision  Sedat Ozer

18
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Source: Fei-Feli Li & Justin Johnson & Serena Yeung



Lecture Notes for Computer Vision  Sedat Ozer

24
Source: Fei-Feli Li & Justin Johnson & Serena Yeung
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Parameter Sharing

One filter to rule them all!

filter
w-vector

channel

same-layer
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• Image Classification & Recognition: A main task in computer vision
• PASCAL
• IMAGENET
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Pop Quiz

• How many parameters do we have in a conv layer with 100 filters that are 

3x3x3 dimensional each?

• For one filter: we have 3x3x3 = 27 filter weights; and + 1 bias = 28 parameters.

• For all 100 filters: we have 28 x 100 = 2800 parameters to learn for that layer!

27
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Pop Quiz

• Imagine that you are designing a CNN with 5 layers. The first 4 layers are 
convolutional and the last layer is FC layer with one neuron (using logistic 
reg).
• The input dims are: 600x600x3.
• In each of the 4 conv. layers:

• We have 10 filters (for each, f = 3)
• Stride is 2
• Padding is “valid”.

What is the output dims at the end of the 5th layer?

30 seconds to return your answers! J
28
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O

⋮ ⋮

"#

32×32 ×1 28×28×6 14×14×6 10×10×16 5×5×16
120 84

5× 5
s = 1

f = 2
s = 2

avg pool

5× 5
s = 1

avg pool

f = 2
s = 2

[LeCun et al., 1998. Gradient-based learning applied to document recognition]

10	classes

⋮
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(Slightly Modified) LeNet-5

Original LeNet-5
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(Slightly Modified) LeNet-5

Activation shape Activation Size # parameters 

Input: (32,32,3) 3,072 0

CONV1 (f=5, s=1) (28,28,6) 4,704 450 + 6 bias = 456

POOL1 (14,14,6) 1,176 0

CONV2  (f=5, s=1) (10,10,16) 1,600 (5x5x6) x 16= 
2400

2400 + 16 = 2416

POOL2 (5,5,16) 400 0

FC3 (120,1) 120 48,000 + 120 = 
48,120

FC4 (84,1) 84 10,080 + 84 = 
10,164

Softmax (10,1) 10 84x10 + 10 = 850

Activation shape Activation Size # parameters 

Input: (32,32,1) 1,024 0

CONV1 (f=5, s=1) (28,28,6) 4,704 150 + 6 bias = 156

POOL1 (14,14,6) 1,176 0

CONV2  (f=5, s=1) (10,10,16) 1,600 (5x5x6) x 16= 
2400

2400 + 16 = 2416

POOL2 (5,5,16) 400 0

FC3 (120,1) 120 48,000 + 120 = 
48,120

FC4 (84,1) 84 10,080 + 84 = 
10,164

Softmax (10,1) 10 84x10 + 10 = 850

For: Grayscale image (single channel) For: Colored (RGB) image

Tensorflow output for the (grayscale) model 
summarizing the model parameters:
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(Slightly modified) AlexNet

= ⋮ ⋮

227×227 ×3
55×55 ×96 27×27 ×96 27×27 ×256 13×13 ×256

13×13 ×384 13×13 ×384 13×13 ×256 6×6 ×256 9216 4096

⋮

4096

11× 11
s = 4

3× 3
s = 2

MAX-POOL

5× 5
same

3× 3
s = 2

MAX-POOL

3× 3
same

3× 3
same

3× 3
same

3× 3
s = 2

MAX-POOL

Softmax
1000

[Krizhevsky et al., 2012. ImageNet classification with deep convolutional neural networks]
32

Original
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Why ConvNet should be Deep?

Rob Fergus, NIPS 2013 33
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Why ConvNet should be Deep?

34
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Why ConvNet should be Deep?
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Why ConvNet should be Deep?
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Why ConvNet should be Deep?
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VGG – 16 (16 layers)

224×224 ×3

CONV = 3×3 filter, s = 1, “same” padding

MAX-POOL = 2×2 , s = 2

[CONV: 64]
×2 layers

224×224×64
POOL

112×112 ×64
[CONV: 128]
×2 layers

112×112 ×128
POOL

56×56 ×128

[CONV: 256]
×3 layers

56×56 ×256
POOL

28×28 ×256
[CONV: 512]
×3 layers

28×28 ×512
POOL

14×14×512

[CONV: 512]
×3 layers

14×14 ×512
POOL

7×7×512 FC
4096

FC
4096

Softmax
1000

[Simonyan & Zisserman 2015. Very deep convolutional networks for large-scale image recognition]
38
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Residual Network - ResNet (Microsoft)

x "[$]

[He et al., 2015. Deep residual networks for image recognition]

x "[$]

A “plain” (deep) network

A residual network (with 5 residual blocks)
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Residual Building Block

![#] ![#%&]

'[#%(] = *[#%(] ![#] + ,[#%(] ![#%(] = -('[#%(]) '[#%&] = *[#%&]![#%(] + ,[#%&] ![#%&] = -('[#%&])

![#%(]

[He et al., 2015. Deep residual networks for image recognition]

With skip connection:  ![#%&] = -(' #%& + ![#])

Skip Connection (Short Cut)

![#] '[#%(] ReLU ![#%(] '[#%&] + ReLU ![#%&]
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Residual Network

x "[$]

[He et al., 2015. Deep residual networks for image recognition]

# layers

tra
in

in
g 

er
ro

r

Plain

Theory

In practice

# layers

tra
in

in
g 

er
ro

r

ResNet

In practice
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ResNet

42
[Source: He et al., 2015. Deep residual networks for image recognition]
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Inception Network

43
(GoogleNet)
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Main motivation for inception network

28 × 28 × 192

1 × 1 

3 × 3 

5 × 5 

MAX-POOL

128

32
32

64

28

28

[Szegedy et al. 2014. Going deeper with convolutions] 44
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What does a 1 × 1 convolution do?
3 1 3 6 5 8
3 2 4 1 3 4
2 1 3 4 9 2
4 5 8 1 7 9
1 5 3 3 4 3
5 4 4 8 3 1

2

6 2 6 . . .
6 4 8 . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .

∗ =

∗ =

6 × 6

6 × 6 × 32 1 × 1 × 32 6 × 6 × # filters
[Lin et al., 2013. Network in network]
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1×1 convolutions can shrink the layer dims

28 × 28 × 192
28 × 28 × 32

ReLU

CONV 1 × 1
32

[Lin et al., 2013. Network in network]
46

Helps reducing the number of parameters!
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The problem of computational cost 

28 × 28 × 192

CONV
5 × 5, 
same,

32 28 × 28 × 32

47

• One filter volume: 5x5x192 for one voxel in the output volume (in the activation map). 

• Since we have 28x28x32 dimensional volume at the output, we need: 
(5x5x192) x (28x28x32) multiplications! (~120Million)
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Using 1×1 convolution for reducing the computation

28 × 28 × 192

CONV
1 × 1, 

16,
1 × 1 × 192 28 × 28 × 16

CONV
5 × 5, 

32,
5 × 5 × 16 28 × 28 × 32

48

(28x28x16) x (1x1x192) = ~ 2.4 Million (28x28x32) x (5x5x16) = ~ 10 MillionMultiplications needed:

Total: 12.4 Million << 120Million
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Inception module

Previous 
Activation

1 × 1 
CONV

1 × 1 
CONV

3 × 3 
CONV

1 × 1 
CONV

5 × 5 
CONV

MAXPOOL
3 × 3,s = 1

same

1 × 1 
CONV

Channel
Concat
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Inception Network (Google)

[Szegedy et al., 2014, Going Deeper with Convolutions]
50

GooLeNet GoogLeNetor

Local Response Normalization (LRN)
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• This lecture has materials from CS231n (Stanford), Andrew Ng and 
Ulas Bagci.
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