Introduction to Computer Vision

CS-484 \& CS-555

Sedat Ozer
 Department of Computer Engineering Bilkent University sedat@cs.bilkent.edu.tr

Last Week

- Introduction to (Computer) Vision Applications
- introduction to the field \& to the course
- an overview of various vision applications

Announcement

- Good news everyone: Besides Google and Bing, now you have a new TA:
- Alexa or Siri
- Teaching Assistant: Mr. Aydamir Mirzayev
- Office: EA505

Projects and Papers

- 2019, 2018 CVPR, ICCV or ECCV conferences
- http://openaccess.thecvf.com/CVPR2019.py
- Check Paper titles first,
- Pick a couple to read.
- Check what dataset they use,
- Do they have a github code? If not, ignore!
- Need a GPU to run the GITHUB code typically.

Test: what do you see in this image?

What do you see in this image?

Now can you see it?

Question:

How would you model (represent) an object in visual recognition? Ideas?

Remember the image:

01010100011010000110100101110011 00100000011010010111001100100000 01110100011010000110010100100000 01110100011101010111010001101111 01110010011010010110000101101100 00100000011101000110111100100000 01101100011001010110000101110010 01101110001000000110001001101001 01101110011000010111001001111001 00101110001000000100100100100000 01101000011011110111000001100101 00100000011110010110111101110101 00100000011001010110111001101010 01101111011110010010000001101001 0111010000100001

This is what computers get (see?)!

This is what you see...

Our common units: Pixels

Grayscale image

Image Types: (Gray)Scalar and Binary

- A scalar image has integer values
$u \in\left\{0,1, \ldots, 2^{a}-1\right\}$
a: level (bit)
Ex. If 8 bit ($a=8$), image spans from 0 to 255
0 black
255 white
Ex. If 1 bit ($a=1$), it is binary image, 0 and 1 only.

Image Type: RGB (red, green, blue)

- Image has three channels (bands), each channel spans a-bit values.

Human Cone-cells (normalized)

(Some people might have 4 cone-types!)

So.... How do we detect an object in an image?

ANY IDEAS ???

Naïve approach: Template Matching

Template Matching

Find the chair in this image

Idea:

- Instead of comparing raw image pixels:
- first map those pixels into another (more robust) form,
- and then compare those mapped forms.
- Finally, select the closest image map (how do you define "closest"? Metrics).
- Features
- Examples: compute edges, compute color histograms, Gradients, HOG, SIFT, ...

"Bag-of-Words" Representation

"Bag-of-Words" (BoW) Histograms

BoW Histogram

Image

| Image
 Features | BoW |
| :--- | :--- | :--- |
| Histogram | |\longrightarrow Classifier \longrightarrow Result

Recipe

BoW Representation

- All have equal probability for bag-of-words methods,
- Location (spatial) information is important but lost.

QUESTIONS?

Stages of computer vision

- Low-level
image \rightarrow image
- Mid-level
image \rightarrow features / attributes
- High-level
features \rightarrow "making sense", recognition

Low-level

edge image

Adapted from Linda Shapiro, U of Washington

Mid-level

original color image

regions of homogeneous color

Adapted from Linda Shapiro, U of Washington

Low-level to high-level

Adapted from Linda Shapiro, U of Washington

Visual recognition

Verification

Visual recognition

Classification

Visual recognition

Detection

Where is the car in this picture?

Visual recognition

Pose Estimation:

Visual recognition

Activity Recognition:

Visual recognition

Object Categorization:

Visual recognition

Segmentation

Imaging process

- Light reaches surfaces in 3D.
- Surfaces reflect.
- Sensor element receives light energy.
- Intensity is important.
- Angles are important.

Figure 2.14: A simplified model of photometric image formation. Light is emitted by one or more light sources, and is then reflected from an object's surface. A portion of this light is directed towards the camera. This simplified model ignores multiple reflections, which often occur in realworld scenes.

Physical parameters

- Geometric
- Type of projection
- Camera pose
- Optical
- Sensor's lens type
- Focal length, field of view, aperture
- Photometric
- Type, direction, intensity of light reaching sensor
- Surfaces' reflectance properties
- Sensor
- Sampling, etc.

Image acquisition

Figure 2.26: Image sensing pipeline, showing the various sources of noise as well as the typical digital post-processing steps.

Image \& Camera (Chicken \& Egg)

- What is an image?
- What is an image for a camera?
- Input?
- Output?
- Relation?
- Projection?
- Compression
- etc.?

Projection?

Projection ?

Image: 3d->2d projection of the world

Adapted from Joseph Redmon, U of Washington

Image: 3d->2d projection of the world

Adapted from Joseph Redmon, U of Washington

Image: 3d->2d projection of the world

Adapted from Joseph Redmon, U of Washington

Image: 3d->2d projection of the world

Adapted from Joseph Redmon, U of Washington

Image: 3d->2d projection of the world

Adapted from Joseph Redmon, U of Washington

Eyes: projection onto retina

Adapted from Joseph Redmon, U of Washington

How to model a camera?

Source:https://www.cc.gatech.edu/~afb/classes/CS4495-Fall2013/slides/CS4495-05-CameraModel.pdf

How to model a camera?

Source:https://www.cc.gatech.edu/~afb/classes/CS4495-Fall2013/slides/CS4495-05-CameraModel.pdf

Pinhole Camera (Dark Chamber Model)

Image source: https://commons.wikimedia.org/wiki/File\%3A001_a01_camera_obscura_abrazolas.jpg https://en.wikipedia.org/wiki/Camera_obscura

Aperture size

Sources:
https://web.stanford.edu/cla ss/cs231a/course notes/01-camera-models.pdf
https://www.cc.gatech.edu/ ~afb/classes/CS4495-
Fall2013/slides/CS4495-05CameraModel.pdf

Camera with a lens

- A lens focuses more light onto the film
- There is a specific distance at which objects are "in focus" and other points project to a "circle of confusion" in the image
- Changing the shape (or thickness, radius or parameters) of the lens changes this distance

Depth of field

$f / 5.6$

f/32

Model: pinhole camera

No lens
No distortion model to correct any possible distortion

Model: pinhole camera

Adapted from Joseph Redmon, U of Washington

Camera calibration

- Camera's extrinsic and intrinsic parameters are needed to calibrate the geometry.
- Extrinsic: camera frame \leftrightarrow world frame
- Intrinsic: image coordinates relative to camera \leftrightarrow pixel coordinates

How do we record color?

At each point we record incident light

Adapted from Joseph Redmon, U of Washington

How do we record color?

Adapted from Joseph Redmon, U of Washington

Focal length

- Field of view depends on focal length.
- As f gets smaller, image becomes more wide angle
- more world points project onto the finite image plane
- As f gets larger, image becomes more telescopic
- smaller part of the world projects onto the finite image plane

Adapted from Trevor Darrell, UC Berkeley

Focal length

28 mm

50 mm

35 mm

70 mm
Adapted from Matthew Brown, U of Washington

Aperture

- A real camera must have a finite aperture to get enough light, but this causes blur in the image

- Solution: use a lens to focus light onto the image plane

Aperture

- Note that lenses focus all rays from a plane in the world - Objects off the plane are blurred depending on distance

Adapted from Matthew Brown, U of Washington

Aperture

- Smaller aperture -> smaller blur, larger depth of field

Adapted from Matthew Brown, U of Washington

Shutter speed

Adapted from Matthew Brown, U of Washington

CS 484-555, Spring 2020

Field of View (zoom)

17 mm

28 mm

85 mm

From London and Upton

Theory of Cameras

There is a huge math about cameras and matching them between them and to the actual world.

There is a (text) book focusing on this topic alone.
(and there are courses focusing on this topic alone)

Further details on the geometry of multiple cameras are available in this text book.

Richard Hartley and Andrew Zisserman

Sampling and quantization

a	b
c	

FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from A to B in the continuous image,

Sampling and quantization

a b
FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Image representation

- Images can be represented by 2D functions of the form $f(x, y)$.
- The physical meaning of the value of f at spatial coordinates (x, y) is determined by the source of the image.

Image representation

- In a digital image, both the coordinates and the image value become discrete quantities.
- Images can now be represented as 2D arrays (matrices) of integer values: $\mathrm{I}[\mathrm{i}, \mathrm{j}]$ (or $\mathrm{I}[r, c]$).
- The term gray level is used to describe monochromatic intensity.

Spatial resolution

- Spatial resolution is the smallest discernible detail in an image.
- Sampling is the principal factor determining spatial resolution.

FIGURE 2.19 A 1024×1024, 8-bit image subsampled down to size 32×32 pixels. The number of allowable gray levels was kept at 256 .

Gray level resolution

- Gray level resolution refers to the smallest discernible change in gray level (often power of 2).

FIGURE 2.21
(a) 452×374, 256-level image (b)-(d) Image displayed in 128 64 , and 32 gray 64, and 32 gray
levels, while levels, while
keeping the spatial resolution constant.

FIGURE 2.21 (Continued) (e)-(h) Image displayed in 16,8 4 , and 2 gray levels. (Original courtesy of Dr. David Dr. David
R. Pickens, Department of Radiology \& Radiological Sciences. Vanderbilt Vanderbilt Medical Center.)

Bit planes

$\begin{array}{lll}a & b & c \\ d & e & f \\ \text { g } & h & i\end{array}$
FIGURE 3.14 (a) An 8-bit gray-scale image of size 500×1192 pixels. (b) through (i) Bit planes 1 through 8, with bit plane 1 corresponding to the least significant bit. Each bit plane is a binary image.

Electromagnetic (EM) spectrum

Energy of one photon (electron volts)

FIGURE 2.10 The electromagnetic spectrum. The visible spectrum is shown zoomed to facilitate explanation, but note that the visible spectrum is a rather narrow portion of the EM spectrum.

Electromagnetic (EM) spectrum

- The wavelength of an EM wave required to "see" an object must be of the same size as or smaller than the object.

THE ELECTROMAGNETIC SPECTRUM

Other types of sensors

a b
 c d

FIGURE 1.6
Examples of
gamma-ray
maging. (a) Bone
scan. (b) PET
image. (c) Cygnus
Loop. (d) Gamma radiation (bright spot) from a reactor valve. (Images courtesy of (a) G.E.
Medical Systems,
(b) Dr. Michael E. Casey, CTI PET Systems, (c) NASA,
(d) Professors

Zhong He and David K. Wehe,
University of
Michigan.)

a
d
FIGURE 1.7 Examples of X-ray imaging. (a) Chest X-ray. (b) Aortic angiogram. (c) Head
CT. (d) Circuit boards. (e) Cygnus Loop. (Images courtesy of (a) and (c) Dr. David
c e R. Pickens, Dept. of Radiology \& Radiological Sciences, Vanderbilt University Medical R. Pickens, Dept. of Radiology \& Radiological Sciences, Vanderbitt University Medical
Center, (b) Dr. Thomas R. Gest, Division of Anatomical Sciences University of Michigan Medical School, (d) Mr. Joseph E. Pascente, Lixi, Inc., and (e) NASA.)

Other types of sensors

FIGURE 1.8 Examples of ultraviolet imaging. (a) Normal corn. (b) Smut corn. (c) Cygnus Loop. (Images courtesy of (a) and
(b) Dr. Michael
W. Davidson,

Florida State University, (c) NASA.)

a b c
d e f
FIGURE 1.9 Examples of light microscopy images (a) Taxol (anticancer agent), magnified $250 \times$. (b) Cholesterol-40×. (c) Microprocessor-60×. (d) Nickel oxide thin film- 600 \times. (e) Surface of audio CD- $1750 \times$ (f) Organic superconductor- $450 \times$. (Images courtesy of Dr. Michael W. Davidson, Florida State University.)

Other types of sensors

FIGURE 1.10 LANDSAT satellite images of the Washington, D.C. area. The numbers refer to the thematic bands in Table 1.1. (Images courtesy of NASA.)

Other types of sensors

A. (a) A simulated color IR image of an urban area, the Washington, D.C., mall. This image is made using three bands of the 210 bands collected by the sensor system, one band from the visible green, one from the visible red, and one from the near infrared. Such displays are referred to as displays in image space. (b) A display of the data of pixels of three materials as a function of wavelength by spectral band number. The bands in this case are approximately 10 nm wide over the range of $0.4-2.4 \mu \mathrm{~m}$. This type of data display is referred to as a display in spectral space.

Other types of sensors

FIGURE 1.12 Infrared satellite images of the Americas. The small gray map is provided for reference. (Courtesy of NOAA.)

FIGURE 1.13
Infrared satellite images of the remaining populated part the world. The small gray map is provided for
reference.
(Courtesy of
NOAA.)

Other types of sensors

FIGURE 1.16
Spaceborne radar image of mountains in southeast Tibet. (Courtesy of NASA.)

Other types of sensors

a b
FIGURE 1.17 MRI images of a human (a) knee, and (b) spine. (Image (a) courtesy of Dr. Thomas R. Gest, Division of Anatomical Sciences, University of Michigan Medical School, and (b) Dr. David R. Pickens, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center.)

FIGURE 1.19

Cross-sectional image of a seismic model. The arrow points to a hydrocarbon (oil and/or gas) trap. (Courtesy of
Dr. Curtis Ober, Sandia National Laboratories.)

Other types of sensors

a b
c d
FIGURE 1.20
Examples of ultrasound imaging. (a) Baby. (2) Another view of baby.
(c) Thyroids.
(d) Muscle layers showing lesion. (Courtesy of Siemens Medical Systems, Inc., Ultrasound Group.)

Image formats

- Popular formats:
- BMP Microsoft Windows bitmap image
- EPS Adobe Encapsulated PostScript
- GIF CompuServe graphics interchange format
- JPEG Joint Photographic Experts Group
- PBM Portable bitmap format (black and white)
- PGM Portable graymap format (gray scale)
- PPM Portable pixmap format (color)
- PNG Portable Network Graphics
- PS Adobe PostScript
- TIFF Tagged Image File Format

Image formats

- ASCII or binary
- Number of bits per pixel (color depth)
- Number of bands
- Support for compression (lossless, lossy)
- Support for metadata
- Support for transparency (transparent gifs, etc.)
http://en.wikipedia.org/wiki/Comparison of graphics file formats

Histogram

A graph!
A form of showing color-intensity distribution in a graph
At each color value, it shows how many pixels have that particuluar color value (a form of frequency)

Image

Image - histogram

Cumulative Histogram

Bin	Frequency	Cumulative $\%$
1	0	$.00 \%$
2	3	2.10%
3	4	4.90%
4	22	20.28%
5	39	47.55%
6	3	49.65%
7	12	58.04%
8	23	74.13%
9	33	97.20%
10	1	97.90%
11	3	100.00%

Example Cumulative Histogram Chart

$$
\text { Sum }=143
$$

Histogram processing

Histogram processing

- Intuitively, we expect that an image whose pixels
- tend to occupy the entire range of possible gray levels,
- tend to be distributed uniformly
will have a high contrast and show a great deal of gray level detail.
- It is possible to develop a transformation function that can achieve this effect using histograms.

Histogram equalization

$p(x), 0<x<1$, is the pdf of the input image. $p(y), 0<y<1$, is the pdf of the output image. Number of pixels mapped from x to y is unchanged, so

$$
p(y) d y=p(x) d x
$$

Let $p(y)$ be constant, i.e., $p(y)=1,0<y<1$. Then,

$$
\begin{aligned}
d y & =p(x) d x \\
\frac{d y}{d x} & =p(x) \\
y & =\int_{0}^{x} p(u) d u=F(x)-F(0)=F(x)
\end{aligned}
$$

where $F(x)$ is the cdf of the input image.
http://fourier.eng.hmc.edu/e161/lectures/contrast_transform/node3.html

Histogram equalization

Adapted from Wikipedia

Image enhancement

- The principal objective of enhancement is to process an image so that the result is more suitable than the original for a specific application.
- Enhancement can be done in
- Spatial domain,
- Frequency domain.
- Common reasons for enhancement include
- Improving visual quality,
- Improving machine recognition accuracy.

Image enhancement

a b
FIGURE 3.4
(a) Original digital
mammogram.
(b) Negative image obtained using the negative transformation in Eq. (3.2-1).
(Courtesy of G.E. Medical Systems.)

Text book: Gonzalez \& Woods

Image enhancement

FIGURE 3.6 Plots
of the equation $s=c r^{\gamma}$ for various values of $\gamma(c=1$ in all cases).

Image enhancement

a	b
c	d

FIGURE 3.8
(a) Magnetic resonance (MR) image of a
fractured human
spine.
(b)-(d) Results of applying the transformation in Eq. (3.2-3) with $c=1$ and $\gamma=0.6,0.4$, and 0.3 , respectively. (Original image for this example courtesy of Dr. David R. Pickens, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center.)

Image enhancement

- Contrast stretching:

$$
\begin{gathered}
I^{\prime}[r, c]=\frac{I[r, c]-\min }{\text { max }-\min } \\
I^{\prime}[r, c]= \begin{cases}0 & I[r, c] \leq \text { low } \\
\frac{I[r, c]-\text { low }}{\text { high-low }} & \text { low }<I[r, c]<\text { high } \\
1 & I[r, c] \geq \text { high }\end{cases}
\end{gathered}
$$

Enhancement using arithmetic operations

a b
FIGURE 3.29
Enhancement by image subtraction.
(a) Mask image.
(b) An image (taken after
injection of a contrast medium into the bloodstream) with mask subtracted out.

Enhancement using color channels

RGB

Hue

Value

Adapted from Joseph Redmon, U of Washington

Enhancement using color channels

More saturation -> intense colors
Adapted from Joseph Redmon, U of Washington

Enhancement using color channels

More value -> lighter image
Adapted from Joseph Redmon, U of Washington

Enhancement using color channels

Shift hue -> shift colors
Adapted from Joseph Redmon, U of Washington

Enhancement using color channels

Set hue to your favorite color

Enhancement using color channels

... or patterns
Adapted from Joseph Redmon, U of Washington

Enhancement using color channels

Increase and threshold saturation
Adapted from Joseph Redmon, U of Washington

