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Today

Image source

• Image Segmentation

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
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Image Segmentation

• Aim: to partition an image into a collection of set of pixels
• Meaningful regions (coherent objects)
• Linear structures (line, curve, …)
• Shapes (circles, ellipses, …)
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• Aim: to partition an image into a collection of set of pixels
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• Linear structures (line, curve, …)
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• Content based image retrieval
• Medical Imaging applications (tumor delineation,..)
• Object detection (face detection,…)
• 3D Reconstruction
• Object/Motion Tracking
• Object-based measurements such as size and shape
• Object recognition (face recognition,…)
• Fingerprint recognition,
• Video surveillance
…
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Image Segmentation
• One of the oldest and most widely studied problems

• Early techniques -> region splitting or merging
• More recent techniques -> Energy minimization, hybrid methods, and deep 

learning
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carInference
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Image 
Segmentation 

Methods

Thresholding

Region based 
methods 
(region 

growing,..)

Clustering 
(k-means, 

mean 
shift,..)

Graph-based 
methods 

(graph-cut, 
random 
walk,…)

Shape based 
methods (level 

set, active 
contours)

Energy 
minimization 

methods 
(MRF,..)

Machine 
Learning 

based 
methods
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Basics of Image Segmentation
• Definition: Image segmentation partitions an image into 

regions called segments.
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Basics of Image Segmentation
• Definition: Image segmentation partitions an image into regions 

called segments.

Image segmentation creates segments of connected pixels by 
analyzing the image w.r.t. some similarity criteria:
intensity, color, texture, histogram, features, …

8
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Binary Images
• A global threshold T can be used to map a scalar image I

into a binary image
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Image Binarization

10

J(x, y) =

(
0 if I(x, y) < T

1 otherwise.

• A global threshold T can be used to map a scalar image I
into a binary image
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Image Binarization

• The global threshold can be identified by an optimization 
strategy aiming at creating “large” connected regions and 
at reducing the number of small-sized regions, called 
artifacts.
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J(x, y) =

(
0 if I(x, y) < T

1 otherwise.

• A global threshold T can be used to map a scalar image I
into a binary image
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Image Binarization
• Thresholding: Most frequently employed method for 

determining threshold is based on histogram analysis of 
intensity levels.
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Peak on the left of the histogram 

corresponds to dark objects

Peak on the right of the histogram 

corresponds to brighter objects

DIFFICULTIES
1. The valley may be so broad that it 

is difficult to locate a significant 

minimum

2. Number of minima due to type of 

details in the image

3. Noise

4. No visible valley

5. Histogram may be multi-modal

Brighter objects

Darker objects
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Thresholding Example

13

Original Image Thresholded Image
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Thresholding Example 2

14

Threshold Too Low Threshold Too High
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Thresholding Example 3

15



Lecture Notes for Computer Vision  Sedat Ozer

Thresholding Example-4

16

110 147 185
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Otsu Thresholding

• Definition: The method uses the grey-value histogram of the given image I as input 
and aims at providing the best threshold in the sense that the “overlap” between 
two classes, set of object and background pixels, is minimized (i.e., by finding the 
best balance).

17
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Otsu Thresholding
• Definition: The method uses the grey-value histogram of the given image 

I as input and aims at providing the best threshold in the sense that the 
“overlap” between two classes, set of object and background pixels, is 
minimized (i.e., by finding the best balance).

• Otsu’s algorithm selects a threshold that maximizes the between-class 
variance . In the case of two classes, 

where P1 and P2 denote class probabilities, and μi the means of object and 
background classes.
• Let       be the relative cumulative histogram of an image I, then P1 and P2

are approximated by               and                       , respectively.
• u is assumed to be the chosen threshold.  18

�2
b = P1(µ1 � µ)2 + P2(µ2 � µ)2 = P1P2(µ1 � µ2)

2

�2
b

cI
cI(u) 1� cI(u)
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Otsu Thresholding Algorithm

P1 =
uX

ı=0

p(i)

P2 =
GmaxX

ı=u+1

p(i)

µ1 =
uX

ı=0

ip(i)/P1

µ2 =
GmaxX

ı=u+1

ip(i)/P2

probabilities Class means
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Example: Otsu 
Thresholding

20Lecture 11: Image Segmentation
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Region Based Segmentation

21
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Region Based Segmentation-Basics

22

Region: Spatial proximity + similarity

A group of connected pixels with similar
properties

Closed boundaries

Computation of regions depends on similarity

Regions may correspond to objects in a scene 
or parts of the objects
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Region Growing
• For segment generation in grey-level or color images, we may start 

at one seed pixel (x,y,I(x,y)) and add recursively adjacent pixels that 
satisfy a “similarity criterion” with pixels contained in the so-far 
grown region around the seed pixel.
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Region Growing
• For segment generation in grey-level or color images, we may start 

at one seed pixel (x,y,I(x,y)) and add recursively adjacent pixels that 
satisfy a “similarity criterion” with pixels contained in the so-far 
grown region around the seed pixel.
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• Defining similarity criteria alone is not an 
effective basis for segmentation

• It is necessary to consider the adjacency 
spatial relationship between pixels
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• Defining similarity criteria alone is not an 
effective basis for segmentation

• It is necessary to consider the adjacency 
spatial relationship between pixels

Region Growing
• For segment generation in grey-level or color images, we may start 

at one seed pixel (x,y,I(x,y)) and add recursively adjacent pixels that 
satisfy a “similarity criterion” with pixels contained in the so-far 
grown region around the seed pixel.
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1. The absolute intensity difference between candidate pixel and 
the seed pixel must lie within a specified range

2. The absolute intensity difference between a candidate pixel and 
the running average intensity of the growing region must lie 
within a specified range;

3. The difference between the standard deviation in intensity over 
a specified local neighborhood of the candidate pixel and that 
over a local neighborhood of the candidate pixel must (or must 
not) exceed a certain threshold

Algorithm
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Seeded Segmentation (Region Growing)

1. Choose the seed pixel

26
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Seeded Segmentation (Region Growing)

1. Choose the seed pixel
2. Check the neighboring pixels and add them to the region if they are 

similar to the seed
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Seeded Segmentation (Region Growing)

1. Choose the seed pixel
2. Check the neighboring pixels and add them to the region if they are 

similar to the seed
3. Repeat step 2 for each of the newly added pixels; stop if no more 

pixels can be added

28|neighboring pixels� seed| < Threshold
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Ex: Muscle/Bone Segmentation in CT Scans
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Ex: Muscle/Bone Segmentation in CT Scans
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Ex: Muscle/Bone Segmentation in CT Scans
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Ex: Muscle/Bone Segmentation in CT Scans
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Ex: Muscle/Bone Segmentation in CT Scans
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Region splitting and Merging Segmentation

• Region splitting:
• Unlike region growing, which starts from a set of seed points, region splitting 

starts with the whole image as a single region and subdivides it into 
subsidiary regions recursively while a condition of homogeneity is not 
satisfied.

34
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Region splitting and Merging Segmentation

• Region splitting:
• Unlike region growing, which starts from a set of seed points, region splitting 

starts with the whole image as a single region and subdivides it into 
subsidiary regions recursively while a condition of homogeneity is not 
satisfied.

• Region merging:
• Region merging is the opposite of splitting, and works as a way of avoiding 

over-segmentation

35
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Region splitting and Merging Segmentation

• Region splitting:
• Unlike region growing, which starts from a set of seed points, region splitting 

starts with the whole image as a single region and subdivides it into 
subsidiary regions recursively while a condition of homogeneity is not 
satisfied.

• Region merging:
• Region merging is the opposite of splitting, and works as a way of avoiding 

over-segmentation
• Start with small regions (2x2 or 4x4 regions) and merge the regions that have 

similar characteristics (such as gray level, variance).

36
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Region splitting and Merging Segmentation

37
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Region splitting and Merging Segmentation

38
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Clustering Based Segmentation Methods

39
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What is Clustering?

• Organizing data into classes such that:
• High intra-class similarity
• Low inter-class similarity

• Finding the class labels and the number of classes directly from the 
data (as opposed to classification tasks)

40
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What is a natural grouping?

41
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What is a natural grouping?

42

Clustering is subjective

School EmployeesSimpson's Family MalesFemales

Cluster by features

• Color
• Location
• Texture
• ….
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Distance metrics

43

metric metricmetric

0.23 3 342.7

Peter Piotr

Question: Can we use any function as a distance metric?
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K-means Clustering

44
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K-means Clustering
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K-means Clustering
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K-means Clustering
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K-means Clustering
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K-means Clustering
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K-means Clustering

50
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K-means Clustering

51
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• “Optimization” Even in segmentation? J

52
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Graph-based segmentation

• Node (  ) = a pixel
• Edge = connectivity between a pair of neighboring pixels
• Edge weight (wij) = the similarity (or dissimilarity) of the pair nodes

wiji
j

Minimize a particular cost over the edges and nodes
Source: http://slazebni.cs.illinois.edu/spring18/
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Felzenszwalb & Huttenlocher algorithm

• Graph definition:
• Vertices are pixels, edges connect neighboring pixels, weights correspond to 

dissimilarity in (x,y,r,g,b) space

• The algorithm:
• Start with each vertex in its own component 

• For each edge in increasing order of weight:

• If the edge is between vertices in two different components A and B,  merge if the edge 
weight is lower than the internal dissimilarity within either of the components

• Threshold is the minimum of the following values,  computed on A and B:

• (Highest-weight edge in minimum spanning tree of the component) + (k / size of 
component)

Source: http://slazebni.cs.illinois.edu/spring18/
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Example results

http://www.cs.brown.edu/~pff/segment/

http://www.cs.brown.edu/~pff/segment/
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Segmentation by graph cuts

• Break graph into segments
• Delete links that cross between segments
• Easiest to break links that have low affinity

• similar pixels should be in the same segments
• dissimilar pixels should be in different segments

A B

Source: S. Seitz

wij

i

j

Slide Source: http://slazebni.cs.illinois.edu/spring18/
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Segmentation by graph cuts
• A graph cut is a set of edges whose removal disconnects 

the graph 
• Cost of a cut: sum of weights of cut edges
• Two-way minimum cuts can be found efficiently

Source: http://slazebni.cs.illinois.edu/spring18/
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Segmentation by graph cuts
• A graph cut is a set of edges whose removal disconnects 

the graph  
• Cost of a cut: sum of weights of cut edges
• Two-way minimum cuts can be found efficiently

Source: http://slazebni.cs.illinois.edu/spring18/
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Segmentation as labeling

• Suppose we want to segment an image into foreground and 
background
• Binary pixel labeling problem
• Naturally arises in interactive settings

Source: http://slazebni.cs.illinois.edu/spring18/
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Segmentation as labeling

• Suppose we want to segment an image into foreground and 
background
• Binary pixel labeling problem
• Naturally arises in interactive settings

User scribbles

Source: http://slazebni.cs.illinois.edu/spring18/
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Labeling by energy minimization
• Define a labeling c as an assignment 

of each pixel to a class (foreground 

or background)

• Find the labeling that minimizes a global energy function:

• These are known as Markov Random Field (MRF) or Conditional 

Random Field (CRF) functions

E(c | x) = fi (ci,x)+
i
∑ gij (ci,

i, j∈ε
∑ cj,x)

Unary potential 
(local data term): 

score for pixel i
and label ci

Pixels Pairwise potential 
(context or smoothing 

term)

Neighboring 
pixels

Source: http://slazebni.cs.illinois.edu/spring18/
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• Unary potentials:

• Cost is infinity if label does not match the user scribble
• Otherwise, it is computed based on a color model of user-labeled pixels

Segmentation by energy minimization

fi (c,x) = − logP(c | xi )

E(c | x) = fi (ci,x)+
i
∑ gij (ci,

i, j∈ε
∑ cj,x)

User scribbles P(foreground | xi)

Source: http://slazebni.cs.illinois.edu/spring18/
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• Unary potentials:

• Pairwise potentials:

• Neighboring pixels should have the same 
label unless they look very different

Segmentation by energy minimization

fi (c,x) = − logP(c | xi )

E(c | x) = fi (ci,x)+
i
∑ gij (ci,

i, j∈ε
∑ cj,x)

gij (c, !c ,x) = wij c− !c

Affinity between 
pixels i and j

high affinity (similarity)

low affinity

Source: http://slazebni.cs.illinois.edu/spring18/
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• These lecture also includes content from Ulas Bagci and Svetlana 
Lazebnik .
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