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Abstract—Recent advances in camera equipped drone ap-
plications and their widespread use increased the demand on
vision based object detection algorithms for aerial images. Object
detection process is inherently a challenging task as a generic
computer vision problem, however, since the use of object
detection algorithms on UAVs (or on drones) is relatively a new
area, it remains as a more challenging problem to detect objects
in aerial images. There are several reasons for that including: (i)
the lack of large drone datasets including large object variance,
(ii) the large orientation and scale variance in drone images
when compared to the ground images, and (iii) the difference
in texture and shape features between the ground and the aerial
images. Deep learning based object detection algorithms can be
classified under two main categories: (a) single-stage detectors
and (b) multi-stage detectors. Both single-stage and multi-stage
solutions have their advantages and disadvantages over each
other. However, a technique to combine the good sides of each of
those solutions could yield even a stronger solution than each
of those solutions individually. In this paper, we propose an
ensemble network, SyNet, that combines a multi-stage method
with a single-stage one with the motivation of decreasing the
high false negative rate of multi-stage detectors and increasing
the quality of the single-stage detector proposals. As building
blocks, CenterNet and Cascade R-CNN with pretrained feature
extractors are utilized along with an ensembling strategy. We re-
port the state of the art results obtained by our proposed solution
on two different datasets: namely MS-COCO and visDrone with
%52.1 mAPIoU=0.75 is obtained on MS-COCO val2017 dataset
and %26.2 mAPIoU=0.75 is obtained on VisDrone test−set. Our
code is available at: https://github.com/mertalbaba/SyNet

Index Terms—Object Detection, Ensemble methods, Deep
learning, UAV images

I. INTRODUCTION

Object detection is an essential yet a challenging task in
computer vision field, despite the recent advances using deep
learning based techniques. While object detection demon-
strated significant success in many applications, those applica-
tions are mostly limited in domains using ground taken images.
ImageNet [1], COCO [2] and PASCAL [3] datasets are such
major datasets driving the deep learning based object detection
algorithms and they contain images taken predominantly on
the ground. Consequently, they do not include a large variance
of the object properties as observed from air. Furthermore,
such state of the art object detection algorithms are designed
considering the problems associated with the ground images
mainly. That is why even the most recent works focusing

on aerial images such as [4], [5], [6] cannot reach to the
level where the state of the art object detection algorithms
perform today on ground images. With the motivation behind
deep neural networks and how object detection is being
performed, performance of the state-of-the-art object detectors
suffer mainly from two reasons in challenging settings: (1) the
images captured has a non-uniform distribution in terms of
object types and (2) scale, orientation, shape and the features
of the objects can significantly differ from the ones appearing
in the ground images.

In recent studies considering class imbalance, most studies
addressed the class imbalance problem from considering the
imbalance between the foreground and background of the
image samples [7], [8]. As another form of class imbalance,
the imbalance between the foreground objects also effects
detection performance in majority of algorithms, as some of
those relevant issues were addressed with different data aug-
mentation techniques as in [8]. Considering the aerial image
setting and the existing image samples in VisDrone dataset [7]
(which we also use in this paper), class imbalance between
the foreground objects remains as a common issue that effects
the prediction performance negatively. The problem of class
imbalance also shows its significance in ground-level view,
which can be observed in MS-COCO dataset [2]. As also
discussed in [9], scale of the objects in datasets is another
issue effecting the detection performance.

Typically, each existing object detection algorithm has its
advantages and disadvantages over the other existing detection
algorithms. Therefore, combining the advantageous properties
of multiple detection algorithms can yield a higher perfor-
mance and that is what we mainly focus on and introduce in
this paper for aerial images. We propose an ensemble network
that selects the good properties (good decisions) of two recent
state of the art detection algorithms namely Cascade R-CNN
[10] and CenterNet [11] to achieve even better state of the art
results on aerial images. In order to deal with small objects
for which assessing detection performance using Intersection
over Union (IoU) metric would not be trivial, benefits of the
Cascade R-CNN [10] algorithm are utilized in our proposed
solution. In addition to that, recently proposed CenterNet
[11] is also used in our proposed solution, as CenterNet is
another effective detection algorithm with good detection rates



at different scales. CenterNet is oriented at the center of the
detected objects and that enables the method to be more robust
to scale differences.

Our proposed approach includes two steps for detection:
(i) we employ an image augmentation technique inspired
from [12] to deal with the imbalance problem making our
proposed approach more robust to classes with lower number
of samples. (ii) we introduce a synergistic network which
combines the predictions of multiple detectors and chooses
the most confident score through a weighted bounding box
fusion [13] method to detect objects. Combining those two
steps offers state of the art prediction performances, when
compared to previous recent efforts in the field [14], [15], [11],
[10] by considering and dealing with two important problems:
the class imbalance problem and the scaling problem.

As verified by our experiments, our proposed method SyNet
achieves state of the art performance in object detection, when
compared to the performances of the state-of-the-art methods
on the VisDrone [7] dataset. In addition to the aerial images,
we also observed that proposed approach works well and
achieves higher performance for object detection in ground-
based images, as our experiments with MS-COCO dataset [16]
demonstrates. Overall, our main contributions can be listed as:

• introduction of a synergistic approach for better object
detection that combines the advantageous properties of
two individual and state of the art object detectors,

• demonstrating the performance of our proposed object
detection method not only on a drone dataset: VisDrone
but also on a ground-image based dataset: MS-COCO,

• employing an augmentation technique to deal with class
imbalance problem in aerial images.

II. RELATED WORK

Object detection has received significant amount of attention
in the last decade. In this section, most relevant work to ours
are summarized under two subcategories: (i) Object Detection
and (ii) Image (data) Augmentation.

A. Object Detection

Following the success of deep convolutional neural net-
works (CNNs) in image classification [17], CNNs are also
used for a more challenging task: object recognition and
localization, i.e. object detection. Firstly, single forward-pass
networks are proposed for object recognition, which are re-
ferred as singe-stage detectors. In [18], object detection is
considered as a regression problem. After dividing image into
grids containing pixels, bounding box and class predictions
are made for each cell of the grid and good performance is
seen in [19]. In [20], batch normalizations and convolutions
with anchor boxes are introduced into [18]. Then, in [21],
anchor boxes, fixed size bounding boxes which are used
as reference boxes, are utilized along with multi-task loss
for object detection and a great performance is achieved in
different extensive datasets. In [22], ResNet101 is introduced
into SSD and deconvolution layers are used to obtain better
detection method, which can perform better for small-scale

objects. In [23], a new loss called FocalLoss is utilized to
solve the class imbalance problem in the object detection.
Then, in [24], a module that refines anchor boxes are proposed.
In [25], anchor boxes are fully eliminated, objects are detected
as two keypoints defining the bounding box and corner pooling
is introduced. In [26], for each class, logistic classifiers are
utilized and better feature extractor is used when compared to
previous version [20]. Recently, in [11], objects are detected as
only a single keypoint, that contains the center location of the
object, and other properties such as size are regressed, which
results good performance with less computational complexity.

In contrast to single-stage detectors, there are also multi-
stage detectors, i.e. double-stage detectors, which divides
detection problem into two sub-problems: 1. region proposals
and 2. bounding box regression. In [27], nearly 2000 region
proposals are generated through selective search and after
that, support vector machines and CNN are used to regress
bounding boxes and class labels. Then, in [28], region of
interest pooling is introduced into [27] and instead of finding
regions directly on the image, regions are generated from the
feature vector of the image. In [29], for the region proposals, a
new approach is presented: Region Proposal Network (RPN),
which is a CNN for producing region proposals and seperately
trainable. Several reference boxes are utilized in [29]. Region
proposals generated by RPN are fed into the region of interest
pooling layer and a detection network generates bounding box
and class label predictions from pooled region proposals. In
[30], position sensitive region of interest pooling layers are
proposed and region proposals are generated from the full
image, instead of from several sub-regions. In [15], region
of interest alignment is introduced into [29] and better results
are achieved.

In addition to single-stage and multi-stage detectors, there
also exists some cascading approaches utilizing sequentially
cascaded networks, such as [31] and [10]. In [10], sequential
detectors whose quality levels increases with the increase in
the depth, i.e. stage number, is proposed and great improve-
ments are seen in state-of-the-art double-stage detectors which
are explained previously.

B. Data Augmentation

To solve the class imbalance problem, data augmentation
is a popular technique that is used by applying fundamental
operations to images such as rotation, scaling and flipping.
Moreover, augmentation methods provide an enrichment on
the data that the technique is used. In addition to traditional
augmentation techniques like flipping, rotating, translating or
coloring, different data augmentation methods are proposed.

In [12], objects which should be detected by object detectors
are cutted, i.e. copied, and pasted on several background
images, along with altering pixel artifacts to generate new
training samples. A technique that randomly removes some
parts of the images to create new training samples with
occlusions is proposed in [32]. In [33], a overlaying images
method named SamplePairing is proposed which mixes two
different images and takes average values of pixels. In [34],



Fig. 1. Architectures of the Faster R-CNN (on the left) and Cascade R-CNN (on the right). F is the feature extractor, Nis are network bodies, R is the
region proposals, Lis are label predictions and Ris are the bounding box predictions.

generative adversarial neural networks (GANs) are utilized to
produce new training samples by mixing different images.
In [35], GANs are utilized for data augmentation and it is
showed that the generated data may be more beneficial than
the original ones. In [36], spatial fusion generative adversarial
neural networks (SF-GANs) are used for new image generation
from original ones. In order to overcome the problems of
distribution in aerial images, a data augmentation approach
is proposed by [8], which resulted with significant increase
in prediction performance in terms of mAP score. Lastly, in
[6] as an augmentation technique, AdaResampling resolves the
problems of scale and background mismatch.

III. METHODS

For object detection, different detectors with different archi-
tectures, some of which have multiple steps, are utilized in the
literature (as discussed in the previous section). In this work, a
method that combines single-stage and multi-stage object de-
tection architectures synergistically is proposed. Furthermore,
image augmentation is utilized in order to enhance the results.
Therefore, next, we describe the details of the used methods
in our proposed solution.

A. Object Detection

In this paper, a neural network based object detector is
proposed that aims to localize and recognize several objects
on given images. A detector computes a bounding box, which,
typically, is a quadruple (xptl, y

p
tl, x

p
br, y

p
br) where xptl, y

p
tl are

the coordinates of the top-left corner of the prediction, p,
and xpbr, y

p
br are the coordinates of the bottom right corner.

For evaluating the quality of the prediction, as a common
metric, intersection of union (IoU ) is utilized, which can be

defined as IoU(bp, bgt) =
a(bp ∩ bgt)
a(bp ∪ bgt)

, where a is the area

function that calculates the area of the given bounding box,
(xtl, ytl, xbr, ybr), bp is the predicted bounding box and bgt is
the true bounding box. Fig. 2 shows the general process.

For the evaluation of the prediction based on the IoU
metric, a threshold t is selected and if the IoU(bp, bgt) score
is larger than the threshold, prediction id considered as the
successful. Usually, prediction threshold t is referred as the
quality level of the detection network.

In our proposed solution, two individual detectors are uti-
lized: Cascade R-CNN and CenterNet. Next, we describe each
of those detectors.

1) Cascade R-CNN: Cascade R-CNN is a cascaded net-
work, that contains multiple repeated networks, which are
connected sequentially, and based on the Faster R-CNN [14]
method. In other words, Cascade R-CNN is the sequentially
repeated version of the Faster R-CNN. In this work, Cascade
R-CNN is utilized as the first object detection building block.
Detailed explanation of Cascade R-CNN can be found in [10]
and this method is briefly explained here.

For object detection, there are two main problems: (1) a
detection network optimized for a certain intersection of union
(IoU) score q, may not perform well in the test dataset, since
the network is optimized for q and IoU scores of the test
samples may significantly differ from q; and (2) number of
samples decreases seriously with the increase in the overall
IoU scores of the samples and this makes a high quality (IoU
score) detector prone to over-fitting problem since the number
of samples are not enough. To overcome these problems, a
cascaded network is proposed to increase the number of high
IoU score samples and allow the detector to perform well for
different IoU scores, whose architecture is presented in Fig.
1.

For the bounding-box predictions, a single detector, d,
tries to minimize bounding-box regression loss [10], which
is defined as

L(d) =
∑
i

G(bpi , b
gt
i ) (1)

where
G(b1, b2) = H(x1tl − x2tl) +H(y1tl − y2tl)+

H(x1br − x2br) +H(y1br − y2br)
(2)

and

H =

{
0.5x2, if |x| < 1

|x| − 0.5, otherwise
(3)

in which bpi is the bounding box prediction of ith object,
bgti is the true bounding box of ith object, and (xtl, ytl) and
(xbr, ybr) are the top-left corner coordinates and the bottom-
right coordinates of a bounding box, respectively. In cascaded
structure, as shown in Fig. 1, N bounding box regressors are



utilized instead of a single regressor and the final bounding
box predictions are generated as

bp = dN ◦ dN−1 ◦ . . . ◦ d1(x, bgt) (4)

where x is the input image and ◦ is an iterative operator such
that each regressor uses the outputs of the previous regressor.
As showed in [10], this allows the network to perform well in
different IoU scores of inputs since each regressor are trained
with different sample qualities and optimized for different IoU
scores. Furthermore, in Cascade R-CNN, a detector dn at stage
n minimizes:

L(xn, b
gt) = LC(cn(xn), yn) + I[yn ≥ 1]LL(dn(xn, b

p
n), b

gt)
(5)

where cn is the classifier at stage n, bpn = dn−1(xn−1, b
p
n−1),

xn is the input to stage n, yn is the label of xn,
LC(cn(xn), yn) is classification loss defined as

LC(cn(xn), yn) = −log(p(y = yn|x)) (6)

and LL(dn(xn, bpn), b
gt) is defined as

LL(dn(xn, b
p
n), b

gt) = G(dn(xn, b
p
n), b

gt). (7)

In this structure, since the outputs of the previous detector
dn−1, which is optimized for IoU score 1n−1 are fed to stage
n, which is optimized for qn such that qn > qn−1, IoU score
of the generated samples are gradually increased. In other
words, as going deeper in the cascaded structures, number
of high IoU score samples increases, which provides enough
samples to higher level detectors and prevent over-fitting issue.
To clarify, IoU score level increases as going deeper in the
cascaded structure since the IoU score of inputs increases.

As a summary, by resampling the initial samples, the
IoU scores of the samples are increased sequentially and a
network robust to over-fitting is obtained. Moreover, since
detectors at different stages are optimized for different IoU
scores, mismatches between training and test performances is
eliminated at a higher level. Hence, Cascade R-CNN offers
high quality detection results.

2) CenterNet: In most of the object detection architectures,
objects are detected by utilizing some anchors, which are fixed
size bounding boxes. In contrast, as shown in Fig. 2, CenterNet
[37] approaches object detection as a keypoint estimation
problem, which allows more flexible, faster object detection.

(a) (b)
Fig. 2. (a) The object (red box) and the predicted bounding box (dashed
box). (b) Estimated center point and sizes of the object by CenterNet.

In CenterNet approach, first of all, a heatmap of keypoints
is predicted as Y p, in which 1 represents a keypoint detection
and 0 is background label. For a true keypoint tuple gti =
(xgti , y

gt
i )εR2, a heatmap Y gti is created as

Y gti = e

−(xgti − kquantix )2 − (ygti − kquantiy )2

2σ2
kquanti (8)

where kquanti = bxgti /R, y
gt
i /Rc, where R is the output

stride, and σ is standard deviation which is size adaptive.
Then, as explained in [37], a network that predicts keypoints
is trained by minimizing the loss defined as

L =
−1
K

∑
gti

g[Y gti ](1− Y pgti)
2log(Y pgti)+

g[Y gti ](1− Y gti )4(Y pgti)
2log(1− Y pgti)

(9)

where g(x) = x if x = 1 and g(x) = 1 − x otherwise
and K is number of keypoints. In addition to keypoints, an
offset, Ogti is predicted for each point in order to recover error

from discretization by minimizing Lo =
1

K

∑
gti
|Okquanti +

kquanti − gti/R|.
After keypoint predicting network is trained, for each

object, keypoints are utilized as center points of the ob-
jects, which have a bounding box represented as quadruple
(xlt, ylt, xbr, ybr). For each object classes, c, width and height
predictions are made as vpc = (wpc , h

p
c) to predict true width

and height of ith object from class c, (vgtc)i = (xilt−xibr, yilt−
yibr) by minimizing

Lv =
1

n

∑
i

|vpc − (vgtc)i| (10)

for each class. Then, a single loss is defined as weighted
sum of L, Lv and Lo, which is used in a single network
for all predictions [37]. For bounding box predictions, de-
tected local maximum keypoints are used as center points
for each class and a bounding box quadruple is predicted as
(xilt+o

i−wi/2, yilt+qi−hi/2, xibr+oi+wi/2, yibr+qi+hi/2),
where (o, q) is the offset predictions and (w, h) is the size
predictions. As result, a powerful and fast object detector
is obtained which does not require any post-processing like
bounding box suppressions and any fixed anchor boxes.

3) Weighted Bounding Box Fusion: For the combination of
different methods, an ensemble method named weighted boxes
fusion approach [13] is used. As explained in [13], instead of
removing some bounding box predictions like non-maximum
suppression, this method utilizes all predictions in order to
find bounding box clusters.

Initially, clustered boxes are stored in C. Ci contains the
matched boxes whose labels are i. Iteratively, each bounding
box prediction with jth label is compared with Fj , which
is the fusion of boxes in Cj and represented by quintuple
(s, xtl, xbr, ytl, ybr), where s is the confidence score. When a



Fig. 3. Architecture of SyNet. Nis are network bodies containing convolutional layers, F is the feature extractor, CN is the CenterNet body, R is the region
proposals, Lis are label predictions, Ris are bounding box predictions, E is the ensemble function and LF , RF are final label and bounding box predictions,
respectively.

box b is matched with Fj and added to Cj , fusion box Fj
confidence is recalculated as

Fj(s) =

∑
AkεCj

Ak(s)

N
(11)

where N represents the total number of boxes in Cj and Ak
is bounding box sample, i.e. a quintuple (s, xtl, xbr, ytl, ybr).
Coordinates of the fusion box are updated as follows:

Fj(x1) =

∑
AkεCj

Ak(s)Ak(xtl)

s1 + s2 + . . .+ sN
(12)

Fj(x2) =

∑
AkεCj

Ak(s)Ak(xbr)

s1 + s2 + . . .+ sN
(13)

Fj(y1) =

∑
AkεCj

Ak(s)Ak(ytl)

s1 + s2 + . . .+ sN
(14)

Fj(y2) =

∑
AkεCj

Ak(s)Ak(ybr)

s1 + s2 + . . .+ sN
(15)

where sk = Ak(s) is the confidence score of Ak. As these
equations show, confidence scores of each bounding box
is utilized as weights in order to obtain meaningful final
bounding box for each class. After all the predicted boxes are
compared with clusters sequentially, box confidence scores are
rescaled as explained in [13], where it is presented that when
compared to common methods such as [38] and [39].

B. SyNet

In this work, a synergistic approach is proposed that com-
bines a single stage detector with a multi-stage detector for
better object detection. The main motivation is that multi-stage
detectors tend to produce more false negatives, which means
that multi-stage detectors fails to detect some objects. On
the other hand, single-stage detectors generally propose more
bounding boxes with less quality. Hence, the combination of
these two different architectures may predict more bounding

boxes than multi-stage detectors and quality of the single-
stage detector predictions may be increased by the multi-stage
one. Thus, an approach that combines Cascade R-CNN [10]
and CenterNet [37] through weighted box ensemble [13] is
proposed.

General architecture of the proposed method is presented
in Fig. 3, where Image represents the images in training
set, FPN is the feature pyramid network [40] for initial
features, R is the proposal generated by FPN , F is the
feature extractor network, RoIPooling is the region of in-
terest pooling layer as described in [29], N1, N2, N3 are
the network bodies consisting several convolutional layers,
CN is the CenterNet network body, L1, L2, L3, L4 are the
label predictions, R1, R2, R3, R4 defines the bounding box
predictions, E is the weighted box ensemble function that
ensembles inputs based on weighted bounding box dusion
as explianed in the previous subsection and LF , RF are the
final class and bounding box predictions, respectively. As
feature extractors, ResNet101 [41] pretrained on ImageNet
[42] is used in Cascade R-CNN and DLA [43] is utilized in
CenterNet.

First of all, images in the train dataset are augmentated
by including additional images, which are generated with the
procedure explained in Section 3.1. Then, these are fed into
both CenterNet and Cascade R-CNN and these networks are
trained. For the Cascade R-CNN, as the feature extractor,
ResNet 101 is used and for CenterNet, DLA is utilized. After
the trainings, bounding box predictions of these two networks
are obtained for each element in the inference set and these are
combined with weighted box fusion method. As result, final
bounding box predicitons are obtained. Since the proposed
approach requires the training of CenterNet and Cascade R-
CNN seperately, memory consumption is significantly higher
than both Cascade R-CNN and CenterNet. However, time
consumption is similar to that of Cascade R-CNN.

Although CenterNet and Cascade R-CNN are utilized as
single-stage and multi-stage detectors, other detectors may also



(a) (b)

Fig. 4. (a) The original image. (b) The augmented version.

be introduced into the network.

C. Image Augmentation

With the rapid development of object detectors, the need
for extensive data with several local and global features is
increased extremely. For this purpose, in this work, data
augmentation approach presented in [12] utilized.

In this approach, the main goal is that generating augmented
real − like images to allow object detectors work better. As
explained in [12], this method consists four main steps. At
first, images of objects, which should be predicted by the
object detector, are collected. In this work, object images in
datasets are utilized. To exemplify, for VisDrone dataset [44],
for car class, image parts limited by bounding box coordinates
whose labels are car are collected as object instances. After
this, scene images should be collected for this approach and
in this work, as scene images, raw training dataset images are
utilized. Then, masks should be predicted for object images
collected at first step. For this purpose, convolutional neural
networks are utilized in [12], however, in this work, object
segmantations in datasets are used as masks after converting
them to binary images if available. Lastly, convolution of
masks and objects are placed on randomly choosen scene
images.

In this work, for each image in a dataset, two augmented
images, that contains more than 10 and less than 30 pasted
additional objects are created to improve training. Fig. 4 shows
an example of the augmentation.

IV. DATASETS

In this work, for the evaluation of the proposed approach,
two different datasets are used, one of which is an aerial
dataset and the other is a ground dataset.

A. VisDrone Dataset

VisDrone dataset [44] for aerial object detection consists
more than 6000 aerial images taken by camera equipped
unmanned air vehicles. In total, there are ten classes which
are used in the evaluation in both [44] and in this work, which
may be listed as: 1. pedestrian, 2. people, 3. bicycle, 4. car,
5. van, 6. truck, 7. tricycle, 8. awning-tricycle, 9. bus and 10.
motor. For each sample, bounding box coordinates are given
along with truncation and occlusion information. In this work,
truncation and occlusion information are not utilized since

TABLE I
RESULTS ON test− set OF VISDRONE [44] DATASET.

mAPC mAP0.50 mAP0.75

SyNet (ours) 25.1 48.4 26.2
Cascade R-CNN 24.7 43.7 24.3
CenterNet 14.3 26.6 13.1

the goal is building a robust detector which may also detect
partially truncated or ocluded objects. Since the aerial image
detection task is still challenging because of object-image size
mismatch and class imbalance, this dataset is utilized in this
work for the validation of the proposed approach.

For the training, training set is utilized that consists 6471
aerial images. Proposed image augmentation method is applied
only to the training set. For the validation, for which the results
generated, test set is used that consists 1580 images.

B. MS-COCO Dataset

For the evaluation of the proposed approach in ground
images, Microsoft Common Objects in Context dataset [16]
(MS-COCO) is utilized. In this work, 2017 version is used,
which contains more than 100000 images from 79 classes.
Since the most of the recent state-of-the-art object detectioon
algorithms are evaluated by using MS-COCO, this dataset is
selected for evaluation of the proposed method.

For the training, training set consisting more than 118000
images is utilized after applying the proposed image aug-
mentation techniques. For the validation, validation set that
contains more than 5000 images is utilized.

V. EXPERIMENTAL RESULTS

We evaluated the prediction performance of our proposed
method on both test−dev− set of the VisDrone dataset [44]
and val − 2017 set of the MS-COCO dataset [16]. For the
evaluation metric, a common metric: mean average precision
(mAP) is utilized. Average precision is defined as the area
under the precision-recall curve. We computed three different
average precision metrics: mAP0.50, mAP0.75 and mAPC .
For mAP0.50, in order to consider a bounding box prediciton
as true, intersection of union score (IoU) between the predicted
and the ground truth bounding box must be higher than 0.50.
Similarly, for mAP0.75, bounding box predictions with IoU
scores higher than 0.75 are considered as true. Lastly, for
mAPC , average precisions are calculated for different IoU
scores varying in the range of: 0.50 : 0.05 : 0.95, and then,
the mean value of those computed average precisions is used.

Results for VisDrone dataset are presented in Table 1. To
obtain Cascade R-CNN and CenterNet results on VisDrone
dataset, those methods are trained on augmented VisDrone
dataset. As this table shows, SyNet may be considered as state-
of-the-art object detection method for aerial object detection
since the proposed approach demonstrates a better perfor-
mance for mAPC , mAP0.50 and mAP0.75 than the recent
state-of-the-art methods, Cascade R-CNN and CenterNet. Fur-
thermore, in order to present the performance of the proposed



TABLE II
RESULTS ON INDIVIDUAL CLASSES USING VISDRONE [44]

test− dev − set (FOR mAP0.50).

SyNet (ours) Cascade R-CNN CenterNet
Pedestrian 48.1 42.6 22.6
People 37.8 33.1 20.6
Bicycle 23.8 21.2 14.6
Car 83.2 79.8 59.7
Van 55.4 49.3 24.0
Truck 49.3 43.5 21.3
Tricycle 34.2 31.6 20.1
Awning 24.2 21.5 17.4
Bus 66.0 61.9 37.9
Motor 44.8 43.1 23.7

TABLE III
RESULTS ON val− 2017 SET OF MS-COCO [16] DATASET.

Backbone mAPC mAP50 mAP75

SyNet (ours) ResNet101
+ DLA-34 47.2 66.4 52.1

Cascade
R-CNN

ResNet101 42.7 61.6 46.6
ResNet50 40.3 59.4 43.7

CenterNet Hourglass-104 40.3 59.1 44.0
DLA-34 37.4 55.1 40.8

Faster
R-CNN

ResNet101 38.5 60.3 41.6
ResNet50 36.4 58.4 39.1

Mask
R-CNN

ResNet101 39.4 60.9 43.3
ResNet50 37.3 59.0 40.2

Retina Net ResNet101 37.7 57.5 40.4
ResNet50 35.6 55.5 38.3

Cascade
Mask R-CNN˜˜

ResNet101 42.6 60.7 46.7
ResNet50 41.2 59.1 45.1

Hybrid Task
Cascade

ResNet101 44.9 63.8 48.7
ResNet50 43.2 62.1 46.8

network, average precision scores are presented for each class
in VisDrone dataset in Table 2, which also shows that SyNet
performs better than Cascade R-CNN and CenterNet.

Results for MS-COCO dataset are presented in Table 2.
Results for other methods are taken from [10], [45] and [37].
SyNet achieved the best performance in the literature and out-
performed many state-of-the-art methods for mAPc, mAP0.50

and mAP0.75 metrics. However, a version of the EfficientDet
[46], referred as EfficientDet-D7 (1536) achieved better result
on mAPc metric, whose mAP0.50 and mAP0.75 results on
validation set are not calculated thus omitted in the table. As
result, SyNet not only performs well in aerial images, but
performs well in both aerial images and ground images.

Besides showing some quantitative results, we also demon-
strate some qualitative results as shown in Figure 5. For
instance, second example shows that there are four vans in
the image, Cascade R-CNN and CenterNet predicted only one
of them correctly but SyNet predicted two of them correctly.

VI. CONCLUSION

In this paper, we introduced a novel ensemble network
for object detection yielding state of the art results when
compared to the existing techniques on drone images. Our
proposed method, SyNet, combines a multi-stage detector and
a single-stage detector and makes a prediction by combining

the individual predictions of each algorithm through a fusion
stage. By carefully choosing the the individual algorithms, we
made use of our their advantageous properties in detection and
combined them in our emsemble network. As demonstrated
in our experiments, our proposed approach yields the highest
mAPC and mAP0.75 scores in both datasets: VisDrone and in
MS-COCO, when compared to most recently proposed state
of the art detection algorithms.

While our SyNet performs better in Table II and yields
higher results than Cascade R-CNN and CenterNet solutions in
all classes on VisDrone dataset, as the results of both Table III
and Table II suggests, the average mAP0.50 value in Table III
remain significantly lower than the average mAP0.50 value of
Table II. That analysis suggests that the object detection task
with the existing state of the art object detection algorithms
still remains as a more challenging problem in drone images,
when compared to detecting objects in ground taken images.
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