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Abstract—There is an increasing demand on utilizing camera
equipped drones and their applications in many domains varying
from agriculture to entertainment and from sports events to
surveillance. In such drone applications, an essential and a
common task is tracking an object of interest visually. Drone
(or UAV) images have different properties when compared
to the ground taken (natural) images and those differences
introduce additional complexities to the existing object trackers
to be directly applied on drone applications. Some important
differences among those complexities include (i) smaller object
sizes to be tracked and (ii) different orientations and viewing
angles yielding different texture and features to be observed.
Therefore, new algorithms trained on drone images are needed
for the drone-based applications. In this paper, we introduce a
deep reinforcement learning (RL) based single object tracker that
tracks an object of interest in drone images by estimating a series
of actions to find the location of the object in the next frame. This
is the first work introducing a single object tracker using a deep
RL-based technique for drone images. Our proposed solution
introduces a novel reward function that aims to reduce the total
number of actions taken to estimate the object’s location in the
next frame and also introduces a different backbone network to
be used on low resolution images. Additionally, we introduce a
set of new actions into the action library to better deal with
the above-mentioned complexities. We compare our proposed
solutions to a state of the art tracking algorithm from the recent
literature and demonstrate up to 3.87% improvement in precision
and 3.6% improvement in IoU values on the VisDrone2019 data
set. We also provide additional results on OTB-100 data set
and show up to 3.15% improvement in precision on the OTB-
100 data set when compared to the same previous state of the
art algorithm. Lastly, we analyze the ability to handle some of
the challenges faced during tracking, including but not limited
to occlusion, deformation, and scale variation for our proposed
solutions.

Index Terms—Object Tracking, Visual Object Tracking, Deep
Reinforcement Learning, Aerial Images, UAV videos

I. INTRODUCTION

Drone or unmanned aerial vehicle (UAV) applications are on
the rise with the recent advances in both robotics and computer
vision, recently. The growing numbers of drone applications
in many domains such as entertainment, aerial photography,
meteorology, maintenance or delivery [21], and the widespread
use of cameras on drones increased the demand and interest on
computer vision based solutions. Tracking an object of interest
visually in drone videos is a common and an essential problem
in computer vision and an emerging component in many drone
applications. While tracking an object in standard (ground
taken) videos has been widely studied, it has been only a

recent interest in drone videos due to the lack of available
large drone data sets until recently. The introduction of recent
drone data sets such as VisDrone [32] is aimed to solve the
data-related issues of visual object tracking in drone images.

In general, the problem of tracking a single object is widely
known as “single object tracking” or “visual object tracking”
in the relevant literature and this problem has been widely
studied on standard videos including VOT [14]–[16] and OTB
data sets [26], [27]. However, visual tracking is a recent topic
in drone (aerial) images and many of the main challenges are
yet to be addressed. Consequently, there are only a limited
number of relevant papers are available on the subject.

While there have been various techniques proposed for
visual object tracking in computer vision, a common and
a recent research focus has been on developing RL based
solutions as in [6], [23], [29], [30], due to their potential on
learning meaningful actions to define how to move a bounding
box of an object of interest from the current frame to the next
one in the exploratory manner of the RL framework.

Many RL-based trackers, as in [29], focus on providing
a reward to the RL algorithm after collecting all the action
sequences in a given video clip. In that approach, the algorithm
has to first obtain all the action sequences for all the frames
in the clip and creates a batch of those (action) sequences.
That batch of action sequences is, then, used to reward the
algorithm. However, we propose rewarding the algorithm after
obtaining each action sequence individually, i.e. as soon as
the action sequence reaches to the terminal action (end of the
sequence) for a frame. That way, we can force our algorithm to
learn taking more accurate actions for each frame in a video
and that approach would yield an improved performance as
our experiments demonstrate.

Furthermore, we emphasize on that it is important to choose
the right action set for the picked data domain, when action-
based RL networks are used such as [29]. For example, in
drone data sets, since the objects typically appear smaller
than they appear in natural (ground) videos, it is important
to consider going along each direction including the diagonal
directions, when taking an action. Therefore, we also study the
performance of including (and deciding on) the right actions
on drone data set. In this paper, to compare our results, we
chose using ADNet from [29] as being the closest recent
relevant work to ours and compare our results to that in our
experiments. To the our best knowledge, this is the first work



that introduces a deep RL based visual object tracker for drone
videos with reported results on VisDrone data set.

In this paper, our main contributions include:
• introduction of a novel reinforcement learning based deep

single object tracker for drone videos,
• introduction of a novel reward function for an improved

performance,
• introduction of new action types for drone data sets,
• testing our algorithm on two data sets: VisDrone2019 and

OTB-100.
The rest of our paper is organized as follows: related work is

reviewed in the next section (Section II), then we give a brief
introduction to our baseline and backbone network (ADNet)
in Section III. In Section IV, we introduce our multiple action-
sequence-based RL trackers. Then, Section V gives the details
of the training process of action-sequence based RL networks,
which consists of three main stages: supervised learning, re-
inforcement learning and online adaptation in tracking. Then,
the experiments are conducted on OTB-100 and VisDrone2019
data sets. Our experiments are presented in Section VI. Finally,
we analyze various aspects of the models and discuss our
results in Section VII.

II. RELATED WORK

Object tracking is one of the core and necessary computer
vision tasks in many vision applications. Its wide range of
application areas includes but not limited to video surveillance,
human-computer interaction and behaviour analysis. Earlier
works focused on using hand-crafted features to track objects
as in [9], [12], [13]. Recently, correlation filter based tech-
niques are also widely used in object tracking because of their
efficient and robust results [3], [5].

When compared to the deep learning based techniques, typ-
ically, the conventional tracking methods using hand-crafted
features are more likely to have difficulties in finding the
location of the object of interest due to various tracking-
related obstacles. Those obstacles include appearance or disap-
pearance of objects, occlusion, background clutter, appearance
similarity, motion blur and illumination change. With the rise
of deep learning techniques and their ability to provide a
stronger functional approximation and (deep) feature repre-
sentations, deep learning based techniques have recently drawn
attention of the researchers working on visual object tracking.
Some of the earlier studies use Convolutional Neural Networks
(CNNs) for feature extraction to replace the hand-crafted
features of the correlation filter methodologies [7], [8], [18],
[19]. MDNet [19] uses a pre-trained CNN with ground truths
that are annotated manually to generate target representations
and assess the candidate bounding boxes sampled randomly
around the previous state in order to find the optimal location.
A different deep learning technique, VITAL algorithm [22]
is proposed to handle high spatial overlapping and extreme
class imbalance between positive and negative samples via
adversarial learning.

Moreover, Siamese networks are proposed for object track-
ing in [2], [10], [24]. SiamFC [2] and Siamese INstance search

Tracker (SINT) [24] both use Siamese deep neural networks
to learn the function bridging the initial patch position of the
target, and the candidate in the following frames.

Deep learning techniques in object tracking has also en-
couraged deep reinforcement learning to make quite a rapid
progress in the recent years. For instance, some studies focus
on sequential decision-making processes, which learn the
policies with deep reinforcement learning algorithms [23],
[29]–[31]. Those approaches mainly aim to find the opti-
mal decision-making policy with reinforcement learning by
maximizing the performance of long-term tracking. Action-
Decision Network (ADNet) [29] introduces a novel tracker
controlled by sequential actions obtained from deep rein-
forcement learning stage [29]. Additionally, ADNet combines
supervised learning and reinforcement learning in its training.
Another model that relies on sequential actions is Deep Q-
Network for Visual Tracking (TrackDQN) [28], which is able
to make decisions in order to move the target from the current
state. TrackDQN leverages Q-Network to obtain the set of
actions to move the current bounding box to the next frame.
Although ADNet has 11 actions in its action set under the
assumption that the scale of the bounding box remains the
same throughout tracking, TrackDQN has 9 actions including
aspect ratio changes.

Although the literature mentioned above tend to use stan-
dard and ground-taken video sequences, visual tracking has
become an emerging topic of research in aerial videos recorded
by drones or UAVs. In the last decade, there is a number of
studies that propose state-of-the-art methods to track objects
in UAV scenarios [1], [17], [25]. During the development of
tracking methods on specifically drone videos, the researchers
face many additional challenges and those challenges include
limited availability of aerial data sets, smaller object size, a
large variance in objects’ scale, orientation, different viewing
angle yielding different shape and features, limited hardware
capacity and constant movement of both the UAV camera and
the targets. As a result, studies focusing on visual tracking on
drone videos remain very limited in number. Besides, most of
them focus on detection based tracking as in [11], [20], [21].
Within the scope of drone data sets, tracking by detection
appears to be a widely used approach considering the fact
that object detection has proved a rapid progress in the recent
years. However, there are not many work introducing RL based
trackers for visual object tracking in drone videos (as of the
submission date of this paper, we could not find any work).
That is where our work differs from the other relevant visual
object trackers for drone videos the most.

III. OVERVIEW OF OUR BASELINE NETWORK: ADNET

We choose an existing and a recent RL-based network,
ADNet [29], from the literature as our baseline network
in our experiments and also use it as a backbone for our
proposed trackers. Therefore, in this section, we first provide
an overview of our chosen baseline network.

The action-decision network, ADNet, determines the future
position of the object of interest in terms of a predicted action



Fig. 1: Architecture of our base-network (ADNet). In this
representation, “up” translation action (displayed in red) is
predicted to capture the position of the object.

Fig. 2: The set of actions defined for (a) our base-network,
and for (b) Model-A.

sequence, and each action in the sequence is predicted from the
current state (where the state represents the current location of
the bounding box). ADNet is trained by both supervised and
reinforcement learning techniques, and an online adaptation
process in tracking is adopted during the testing process, if
the confidence score drops below a certain threshold. The
network’s architecture is presented in Figure 1. We use the
same architecture as base network in our approach. However,
we also explain and show the changes that we made in the
architecture in the following sections.

ADNet follows a Markov Decision Process strategy for
tracking, which is defined by a tuple of states s ∈ S, actions
a ∈ A, a state transition function s′ = f(s, a), and a reward
function r(s, a).

In a video that has L frames, an action and a state are
represented as at,l and st,l, respectively, for t = 1, ..., Tl and
l = 1, ..., L, where Tl denotes the terminal state at frame l. The
terminal state occurs when the action is stop, and is transferred
to the next frame as following: st,l+1 = sTl,l.

The action set, A, contains a total number of 11 actions
including translation movements, scale changes, and stop
action. The complete action set can be seen in Figure 2(a).

The state, st, is defined as a tuple consisting of the
image patch: pt, and the action dynamics vector: (pt, dt).
The bounding box: bt is represented by a vector, bt =
[x(t), y(t), w(t), h(t)]. The first two elements of bt correspond
to the x and y coordinates of the center; whereas the last two
elements denote the width and height of the bounding box,
respectively. The patch: pt in frame F at iteration t is defined
as: pt = φ(bt, F ), where φ is a function to resize the input

image to fit the input size of the network. Action dynamics
vector stores the history of the past k actions.

Each action at associated with state st determines the
next state st+1 by state transition functions. State transition
functions are patch transition function bt+1 = fp(bt, at),
which moves the patch according to the action; and action
dynamics function dt+1 = fd(dt, at), which stores the action
history transition. Correspondingly, the amount of change in
the patch is calculated by ∆x(t) = αw(t) and ∆y(t) = αh(t),
where α is a constant.

When the stop action (the terminal action for a sequence of
actions) is reached as a result of state transitions, the patch is
finalized. The tracker obtains the reward after the tracking is
performed on all the frames in each video sample. Then, the
reward function, r(s), is activated for the action sets resulting
from these tracking simulations. ADNet uses the following
reward function, where IoU(bT , G) is the overlap ratio of the
ground truth and the terminal patch:

r(sT ) =

{
+1, if IoU(bT , G) > 0.7
−1, otherwise (1)

The reward at the termination state, zt = r(sT ) is inter-
preted as the tracking score (target value) while updating the
network in reinforcement learning stage.

IV. OUR ACTION-SEQUENCE-BASED RL TRACKERS

In our action-sequence-based RL tracker, we use ADNet as
the base network. In this paper, we introduce four different
models and we name them: Model-A, Model-B, Model-C and
Model-D. Below, we explain each of those models in details.

A. Model-A

Our first model focuses on utilizing and choosing proper
action sets for the drone domain. For that task, we utilized
and tested different setups. However, we report only the best
working action set for us here. We noticed that utilizing the
action set as shown in Figure 2(b) showed best for us. There,
we have 12 actions representing the directional movements,
two actions for scale changes and one action representing the
terminal action (stop), yielding total of 15 actions.

B. Model-B

Our base network (ADNet) uses a pre-trained network to
extract the visual features. In particular, the ADNet archi-
tecture uses the first three convolutional layers of VGG-M
[4] for initialization of the filters, biases and weights. In
order to analyze the effect of backbone network on model
performance, our second model, Model-B, uses VGG-F [4]
as backbone network. Since VGG-F has relatively larger
filter sizes compared to VGG-M, we choose the first two
convolutional layers of VGG-F so that the filter size does
not exceed the input dimensions through convolutional layers.
Figure 3 displays the detailed network structure of Model-B.

The first convolutional layer of VGG-F consists of 64 filters
of size 11x11, with stride 4. It is followed by ReLu and batch
normalization layers. Then, a max-pooling operation is applied



Fig. 3: Architecture of Model-B.

with filter size 3x3 and stride 2. The second convolutional
layer has 256 filters of size 5x5 with stride 1. Similarly, this
layer is also followed by ReLu activation, batch normalization,
and an identical max-pooling layer.

C. Model-C

In an attempt to increase the performance of reinforcement
learning stage, we introduce Model-C by making alterations
on two areas of the reinforcement learning algorithm of our
base-network: reward function and RL algorithm. First of all,
we introduce a hybrid reward function in the reinforcement
learning stage, where the length of action set and the overlap
ratio are both included during the rewarding process. It is
important to recognize that Model-C generates rewards in the
terminal patches, which indicates that the sequence of actions
is rewarded, rather than individual actions. Thus, the new
reward function lets the model utilize the amount of actions
required to reach the target state. Moreover, the overlap ratio,
IoU(bT , G), is included so that the reward is also proportional
to the success of the tracking sequence. The reward function
of Model-C is defined as following:

r(sT ) =

{
(10−length({at,l}))∗IoU(bT ,G), if IoU(bT ,G)>0.7

−1, otherwise (2)

where {at,l} is the set of actions resulting from tracking
simulation.

Secondly, our base model updates the network parameters,
WRL, after the calculation of tracking scores on all the frames
in each video clip sampled from test videos. In contrast, we
successively calculate target values and rewards, then update
the network parameters. Hence, we let reinforcement learning
algorithm give reward to the set of actions each time the
tracking is applied on a sample video clip to update the model
(Algorithm 1). In this way, the rewards and punishments are
given right after the tracking operation of each sample video
clip is terminated in order to obtain robustness and increase
the performance during reinforcement learning.

D. Model-D

Model-D is very similar to Model-C in terms of reinforce-
ment learning algorithm, that is to say Model-D also updates

Data: Pre-trained network (WSL), training sequences
{Fl} and ground truths {Gl}

Result: Trained network weights (WRL)
Initialize WRL with WSL;
while WRL does not converge do

Randomly select {Fl}Ll=1 and {Gl}Ll=1

Set initial b1,1 ← G1

Set initial d1,1 as zero vector
T1 ← 1
for l← 2 to L do
{at,l}, {bt,l}, {dt,l}, Tl
← TRACKING(bTl−1,l−1, dTl−1,l−1, Fl)

Compute tracking scores {zt,l} with {bt,l} and
{Gl}

Calculate ∆WRL

Update WRL using ∆WRL

end
end

Algorithm 1: Action-Sequence-Based Tracker (Model-C)

the parameters of the network using Algorithm 1. However,
its reward function is identical to that of our base-network,
ADNet, which is described in Eq. 1.

V. TRAINING OUR ACTION-SEQUENCE-BASED RL
TRACKER

Training of an action-sequence-based RL trackers consists
of three individual training stages: (i) supervised learning, (ii)
reinforcement learning and (iii) online adaptation in tracking.
Supervised learning trains the network to learn and predict
action labels with respect to the patch positions. In the
reinforcement learning stage, the network that resulted from
supervised learning is updated by training sequences with
tracking simulation. The main goal of reinforcement learning
is to utilize and improve action dynamics. Finally, while
tracking the test sequences, the challenging cases such as
changes in appearance and deformations of the objects are
captured by applying an online adaptation stage.

A. Supervised learning stage

The supervised learning stage aims to train the network
parameters, {w1, w2,. . . , w7}, to associate the states with the
corresponding actions. Hence, the action dynamics vector is
not taken into consideration in this stage.

The training data set consists of patches and size of ground
truth for each frame in the videos. Therefore, sample patches to
be used during supervised learning are generated by applying
Gaussian noise to the ground truth bounding boxes. Action
label, oactj , for a patch is predicted to be the action that
results in maximum overlap ratio of ground truth and the patch
associated with this action, i.e. Intersection-Over-Union (IoU ),
as following: oactj = arg maxa IoU(f̂(pj , a), G).

Moreover, it is assumed that the class label, oclsj , of a patch
is predicted correctly if the overlap ratio of patch and ground
truth is higher than 0.70, as shown in Eq. (3).



TABLE I: Comparison of our proposed methods to the baseline algorithm on OTB-100 and VisDrone2019 data sets.

OTB-100 VisDrone2019
Experiment Type Model Precision FPS IoU Precision FPS IoU

(20 pixels) (20 pixels)
Baseline model ADNet 78.47% 4.89 0.603 89.15% 6.33 0.579

Action set Model-A 79.45% 4.58 0.612 91.94% 6.08 0.557
Backbone network Model-B 77.15% 8.11 0.574 89.67% 6.53 0.553

Reward Model-C 80.61% 6.25 0.589 93.02% 5.61 0.611
function Model-D 81.62% 7.02 0.616 91.74% 6.13 0.615

Fig. 4: Precision vs. location error threshold plots for experi-
ments on (a) OTB-100 data set, (b) VisDrone2019 data set. The
percentages in the legends correspond to the mean precision
of the model performance on the corresponding data set when
the location error threshold is 20 pixels.

oclsj =

{
1, if IoU(pj , G) > 0.7
0, otherwise (3)

The loss function LSL is defined as a multi-task function
to train parameters in our action-sequence-based RL tracker.
LSL combines the cross-entropy losses of both action label
prediction, ôactj , and class label prediction, ôclsj . LSL is defined
as

LSL =
1

m

m∑
j=1

L(oactj , ôactj ) +
1

m

m∑
j=1

L(oclsj , ôclsj ) (4)

where m is the batch size, and L is the cross-entropy loss. The
network parameters, WSL, are updated by minimizing the loss
function.

The steps of supervised learning stage is identical for all
of our action-sequence-based RL trackers: Model-A, Model-B,
Model-C and Model-D.

B. Reinforcement learning stage

In reinforcement learning, the network parameters {w1,
w2,. . . , w6} are trained in order to capture the state-action
policies. Thus, FC7 layer, which predicts the confidence score
is neglected.

Reinforcement learning initially uses the network parame-
ters resulting from the supervised learning stage. Through the
iterations of reinforcement learning stage, a training sequence
is randomly selected with their ground truths. Then, tracking
simulation is performed by training this sequence labelled by
ground truths. During tracking simulation, state set {st,l},

action set {at,l}, and reward set {r(st,l)} are produced for
t = 1, ..., Tl, and l = 1, ..., L. The action at,l is defined as
the action that maximizes the conditional action probability
p(at,l|st,l), under network parameters WRL, {w1, w2,. . . ,
w6}, as shown: at,l = arg maxa p(a|st,l;WRL).

The tracking score of the simulation corresponds to the
reward given at the terminal state. In Model-A, Model-B and
Model-D, successful tracking with IoU greater than 0.70 is
rewarded with +1, whereas failures are punished with −1, as
defined in Eq. (1). On the other hand, Model-C uses a reward
function that is a hybrid approach combining the IoU value
and the number of actions in the action set resulting from
tracking simulation, as in Eq. (2).

Furthermore, in reinforcement learning stage, the network
parameters (WRL) are updated using Stochastic Gradient
Ascend in order to maximize the tracking scores, as shown
in Eq. (5).

∆WRL∞
L∑
l

TL∑
t

∂log p(at,l|st,l;WRL)

∂WRL
zt,l (5)

With a different approach than Model-A and Model-B,
which update the network parameters after applying simulation
tracking on all the frames of each video clip, Model-C and
Model-D successively calculates and updates network for each
frame in a sampled video clip, as shown in Algorithm 1.
Namely, the RL algorithms vary across our proposed models.

C. Online adaptation in tracking

During the implementation of tracking, the pre-trained net-
work is updated to be more robust to challenges such as sudden
changes in the appearance of the object, or deformation.
The convolutional layers of ADNet {w1, w2, w3} possess
the information regarding tracking. On the other hand, fully
connected layers {w4, w5, w6, w7} are expected to learn
the information that is specific to the videos. Therefore,
during online tracking, the convolutional layers remain stable,
whereas fully connected layers are fine-tuned.

Fine-tuning the parameters requires a supervised learning
approach. The patch position predicted by the network is
considered as the temporal ground truth. During online adap-
tation, the training samples contain patches that are randomly
sampled around this ground {pi}, action labels {oactj }, and
class labels {oclsj }, with a very similar approach adopted in
the supervised learning stage. Online adaptation is conducted
in every I frames using these training samples.



Fig. 5: Sample successful cases of our Model-D over the baseline network (ADNet) on OTB-100 data set. The tracking results
of Skiing, Panda and Singer2 from OTB-100 data set are displayed. The blue, red and green bounding boxes represent the
bounding boxes of ADNet, Model-D and the ground truths, respectively.

The confidence score, c(st,l), of state st,l, is the target
probability, p(target|st,l;W ), that result from the confidence
layer, FC7. If the confidence score of the predicted target is
greater than 0.50, training samples are generated using the
tracked patch positions. The tracker is said to miss the target if
the confidence score is less than −0.50. In that case, the target
is re-detected by selecting the target position candidate with
the highest confidence score, as b∗ = arg maxb̃i

c(b̃i), where
b̃i is the set of target position candidates randomly generated
by applying Gaussian noise to the current target position.

Our action-sequence-based RL trackers all adopt the same
approach in online adaptation in tracking.

VI. EXPERIMENTS

In this section, we evaluate the performance of our proposed
models and compare them to ADNet on two data sets. We
first train our models on VOT data sets and then test and
compare their performances on OTB-100 [27] data set. Then,
we train and test our proposed models on recently proposed
VisDrone2019 [32] data set.

First, our models are trained on 58 videos collected from
VOT2013 [16], VOT2014 [15] and VOT2015 [14] data sets.
We test those trained models on OTB, which includes a total
number of 100 videos from both OTB-50 [26] and OTB-100
[27] data sets. Then, we train our RL based deep trackers on
VisDrone2019 (VisDrone2019-SOT trainset part1) [32] data
set which includes 43 aerial videos for training, and 11 aerial
videos (from VisDrone2019-SOT valset) for testing.

The performance of the models are evaluated based on
two metrics: center location error (CLE) and IoU . CLE
corresponds to the distance between the center of the bounding
box resulting from tracking, and the center of the ground truth,

whereas IoU is the ratio of the intersection of the predicted
bounding box and its ground truth over their union. For all the
experiments, the precision values as a one-pass evaluation is
analyzed with a center location error threshold of 20 pixels.

VII. ANALYSIS

The performance analysis of the models is conducted adopt-
ing the following two perspectives: overall performance with
respect to the defined metrics, and the model performance
against challenging aspects in visual tracking data set, OTB.

A. Overall performance

In this part, we analyze the results of our RL-based trackers
introduced in Section IV. Table I presents the precision, IoU
and frames-per-second (FPS) values of the corresponding
models on OTB-100 and VisDrone2019 data sets.

The results show the precision averaged across all test
samples with a center location error threshold of 20 pixels.
Figure 4 displays the precision against location error threshold
for each of our trackers.

The additional directions in action set in Model-A seem
to improve performance slightly for OTB-100 and Vis-
Drone2019. Furthermore, Model-B can achieve faster per-
formance in terms of FPS value when VGG-F is used as
backbone network. Model-B appears to perform faster than
ADNet while maintaining the precision, even though there is
a negligible decrease in its value. Therefore, Model-B seems
to be practical in cases where speed is an important parameter.

Ultimately, when we consider the precision metric, our
proposed RL method introduced in Model-C and Model-D
appears to improve the performance on both data sets. In
particular, Model-D increases the precision by 3.15% on OTB-
100, and Model-C increases the precision on VisDrone2019



Fig. 6: Sample successful cases of our Model-C over the baseline network (ADNet) on VisDrone2019 data set. The tracking
results of uav0000092 00575 s and uav0000115 00606 s from VisDrone2019 data set are displayed. The blue, red and green
bounding boxes represent the bounding boxes of ADNet, Model-C and the ground truths, respectively.

Fig. 7: Average precision results of ADNet, Model-A, Model-B,
Model-C, and Model-D across the set of videos from OTB-100,
grouped by challenging aspects.

data set by 3.87%. It can be interpreted that experimenting
with the definition of reward function proves a considerable
improvement on the overall model performance.

B. Challenging aspects

Next, we take a closer look at how models handle some of
the challenges in tracking task. The test sequences in OTB-
100 are manually labeled with 11 different attributes, which
reflects the challenging aspects including but not limited to
scale variation, deformation, background clutter, and blur [27].
The number of videos bearing the challenging aspects and their
definitions are presented in Table II.

Next, we discuss the model performance under various
groups of challenges for tracking task on OTB-100. Figure
7 shows the average precision values of each model against
challenging aspects.

In Figure 7, we observe that Model-A, which has a larger
action set, seems to perform best for Low Resolution videos.
The model exhibits the best performance with a significantly
high precision under Low Resolution videos. On the other

TABLE II: Challenging aspects in OTB-100.
Name Description Number of videos

IV Illumination Variation 38
SV Scale Variation 64

OCC Occlusion 49
DEF Deformation 44
MB Motion Blur 29
FM Fast Motion 39
IPR In-Plane Rotation 51
OPR Out-of-Plane Rotation 63
OV Out-of-View 14
BC Background Clutters 31
LR Low Resolution 9

hand, it has the lowest performance on Occlusion set. Also,
with their proposed reward functions, Model-C and Model-D
seems to significantly improve precision under Illumination
Variation, In-Plane Rotation and Low Resolution.

Sample successful cases of Model-D on OTB-100, and
Model-C on VisDrone2019 can be seen in Figure 5 and 6.

VIII. CONCLUSION

Recently, drone-based applications receive an increasing
demand in a wide range of domains such as video surveillance
and entertainment. As camera equipped drones are widely
used in such domains, more and more computer vision based
solutions are needed & utilized on aerial videos recorded
by drones. Although one of the most common vision tasks
is object tracking, when applied on aerial images, it still
suffers due to additional challenges such as smaller target size,
significant change in orientation & scale and the movements
of both UAV’s camera and targets.

In this paper, we introduce a set of action-sequence-based
deep reinforcement learning trackers for visual object tracking
in aerial videos and demonstrate how RL based tracker can



be adopted on drone (UAV) images. We tested our trackers
on both ground-taken videos (OTB-100), and drone videos
(VisDrone2019). In our trackers, we discuss the action types,
backbone network structure, and reward function in RL stage.
We compare our proposed solutions to a recent model and
demonstrate improvements in both precision and IoU values.
Our Model-D demonstrates an improvement on precision up to
3.15% on OTB-100 dataset, while Model-C improves precision
by 3.87% on VisDrone2019 dataset.
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