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Abstract— The ability to visually extract and track features is appealing to scientists in many simulations including flow fields. 
However, as the resolution of the simulation becomes higher, the number of features to track increases and so does the cost in 
large-scale simulations. Since many of these features act in groups, it seems more cost-effective to follow groups of features rather 
than individual ones. Very little work has been done for tracking groups of features. In this paper, we present the first full group 
tracking model in which we track groups (clusters) of features in time-varying 3D fluid flow simulations. Our model uses a clustering 
algorithm to group interacting features. We demonstrate our model on data output from a 3D simulation of wall bounded turbulent 
flow.  

Index Terms— Feature tracking, group tracking, grouping, clustering, packet identification, scientific visualization. 

 

1 INTRODUCTION 

Following the interactions of physical phenomena over time is an 
important problem. There have been many papers that deal with time 
varying phenomena focusing on individual phenomenon or features, 
examples can be found in the papers [1], [2], [3], [4],[5], [6] and [7]. 
Today’s advanced simulations generate high resolution data at peta-
byte or exa-byte scale. As datasets get larger, the number of features 
in the simulation grows. Similarly, as the resolution becomes finer, 
some features that appeared large in coarser resolution runs become 
finer. The change in resolution affects the identification of feature 
dynamics since some features merge at a lower resolution [9]. This is 
similar to identifying finer features as a single structure, i.e. group, at 
a lower resolution. Various interactive navigation and exploration 
tools proposed to help scientist explore the large scale data at 
different resolutions as in [9] and [10].  
     Groups also exist in scientific simulations regardless of the 

resolution. In many domains, features tend to act coherently in 
meaningful groups. Generally speaking, a group is a set of coherent 
structures (features) that are related to each other in certain ways or 
“act” together (See Section 3). (This is analogues to birds that both 
act individually and fly together in flocks). Understanding both the 
individual feature evolutions and the group evolutions is important to 
understanding the dynamics of scientific phenomena. Examples of 
scientific group dynamics include groups of cells and studying their 
collective behaviour in biochemistry [8], groups of galaxies (halos) 
in cosmology [11] and groups of hairpin vortices (packets) in wall 
bounded turbulent flow [12]. What is common among all the above 
examples is that they all have a hierarchical structure where a set of 
smaller structures (e.g., a set of voxels)  forms a high level structure 
(e.g., a feature) and a set of these high level structures (e.g., features) 
forms an even a higher level structure (e.g., a group).  
     While feature tracking follows the interaction and evolution of 
individual features, the dynamics of groups of features has not been 
fully addressed. Our focus here is on unconnected or disambiguated 
features (although our model can be applied to groups of connected 
features as well). While many features in scientific simulations can 
be connected at very low thresholds, our goal in this work is to 
understand the dynamics of groups of individual features.  

Figure 1: Feature and group tracking  in wall bounded turbulent  flow simulation data. Original data  is a result of 3D time varying simulation, the variable 
being visualized  is swirl magnitude;  (I)   Features extracted  in t1 where each feature has an automatically generated unique color (total 262 features);  (II) 
Packets in t1 where a total of 177 packets are identified and 3 sample packets (Packet_A, Packet_B and Packet_C) are circled. Packets are groups of features 
that travel together. (III) Feature tracking of Feature_a in the first 5 time frames; (IV) Group tracking of Packet_A in the first 5 time frames where Feature_a 
ϵ Packet_A. Features join and leave packets throughout a packet evolution. 
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    In this work, we present the first full group tracking model in 
which we track groups as well as the individual features that 
comprise them. In order to track groups, we first extract features, 
track them and then group them based on the grouping criteria. Once 
features are grouped at each time step, we track the groups to see 
how they change and interact over time. A clustering algorithm is 
employed to cluster (group) the features. One benefit of employing a 
clustering algorithm is the ability to isolate and map the group 
definitions from various domains to the computational domain via 
similarity functions (See Section 3). This property of clustering 
algorithms helps us to build a generic model for group tracking. We 
apply our group tracking model on a wall bounded turbulence-Direct 
Numerical Simulation (DNS) and demonstrate various visualizations. 

2 RELATED WORK 

Early studies of group tracking consider movement of features within 
radar data a list of such papers can be found in [13]. Computer vision 
studies also address group tracking. McKenna et al. [14] proposed a 
computer vision based tracking system. The system utilized color to 
disambiguate occlusions and to qualitatively estimate the depth 
ordering and position during occlusion. The system tracks groups of 
people through mutual occlusions as they form groups and then 
separate. Gennari and Hager [15] introduced a general class of 
partitioning functions to define a group, and a set of rules to split and 
merge groups. Based on the group definition, they proposed a 
modified PDA estimator to track groups of objects. They reported 
that they can detect the groups of people that merge and split. 
Mucientes and Burgard integrated Multi-Hypothesis Tracking 
(MHT) with Murty’s algorithm to tack clusters of people [16]. Joo 
and Chellappa targeted on solving the data association problem in 
object tracking using the multi-hypothesis approach [17]. Lau et al. 
extended the MHT method to hypothesize over both, the group 
formation process (models) and the association of observations to 
tracks (assignments) [18]. 
    In scientific visualization, the first complete feature tracking 
framework was introduced by Samtaney et al. [1], as a solution to 
extract and track the volumetric features within time varying data 
sets. In their framework, they proposed the first feature tracking 
model and used centroid position, volume, mass and 2D circulation 
information to track features. In the same group, Silver and Wang 
extended the feature tracking model by introducing the volume 
tracking schema in [2], [19] and [20]. Then they observed that 
features overlap between two consecutive time frames when the 
frame sampling rate is high enough. By incorporating this 
observation in their work, they developed a more memory efficient 
algorithm which supported unstructured data sets as well. The next 
refinement, prompted by extending the feature tracking framework to 
a distributed Adaptive Mesh Refinement (AMR) data structures, 
allowed a viewer to isolate a multi-level isosurface and visualize its 
evolution spatiotemporally at different resolutions [21]. Next, the 
fitting of ellipsoids to the features was introduced for an efficient 
attribute computation and applied to the characterization and 
visualization of plumes [22]. Several studies use a predictive 
approach to tracking.  In [7], Reinders et al. proposed a method that 
estimates the locations of the features in the next frame to improve 
the tracking quality by assuming that the features evolve predictably. 
Similarly, Muelder and Ma [5] proposed to include a prediction 
method. However, instead of extracting all the features first, they 
propose using the information of the current and previous frames to 
estimate the location of the feature in the next frame and they use 
that information to perform both segmentation and tracking at the 
same time. Other studies address different ways of abstracting the 
correspondence. In [3], Ji et al. proposed a method to track features 
by using higher dimensional isosurfacing. Thus, instead of extracting 
the isosurfaces from each time frame and then performing an 
overlapping test, they propose using the higher dimensional 

geometry to track user selected features in time by performing an  
isosurfacing process  in R4 as opposed to doing it in R3. In [23], 
Tzeng and Ma applied neural networks to find the region boundaries 
by estimating the transfer functions in the feature tracking 
framework. Sohn and Bajaj [24], proposed a method to compute the 
correspondence in time varying contour trees. By applying this idea 
on feature tracking, they tracked user selected contours.  In [25] 
Laney et al. propose to use Morse-Smale complex to segment 
bubbles in a hierarchical segmentation structure. Different attributes 
have also been used to correlate features. In [26], Ji and Shen 
proposed using earth mover’s distance metric to track objects as an 
alternative to the volume overlapping or attribute based matching 
methods. In [27], Caban et al. proposed to use first and second order 
statistics with run-length matrices to capture textures and to 
distinguish them. Thus, by generating a feature vector, they perform 
a similarity search to find the best matches. In [28] Gezahegne et al. 
proposed a method that allows objects to retain their original labels 
for t frames, thus the algorithm can detect bubbles going through 
each other instead of being classified as merged and then split.   
     In earlier visualization works, clustering has been successfully 
employed to extract the groups for visualization. Examples can be 
found the papers [29], [30], [31] and [32]. However none of these 
papers address the issues related to group tracking. 
     In our work, we incorporate a number of these ideas to as we 
modify our previous feature tracking framework to track groups of 
features. Next we will give an overview of group extraction followed 
by details of some aspects.   

3 GROUP EXTRACTION 

The group tracking framework flow diagram is shown in Figure 2.  
In this diagram, the first step is feature extraction (Figure 2a). A 
feature is the region of interest in the data. Features can be extracted 
by domain specific algorithms, or by using common techniques such 
as region growing, clustering, geometry or topology based 
algorithms as in [2], [3], [4], and [25]. Any of these techniques can 
be used in this framework. In addition to extraction of features, their 
attributes also have to be computed. Spatial feature attributes are 
computed after features are determined and include the geometric 
structure of the feature as well as the variable values. Examples are 
centroid, min/max (local extrema), volume, feature extends, surface 
information, etc. A list of different types of feature attributes is given 
in Table 1. 

Spatial feature 
attributes 

Time-dependent 
feature attributes 

Feature-to-Feature 
attributes 

Centroid,  
Max/min,  
Volume,  
Shape,  
Total number of 
particles,  
Mass,  
Self-Orientation, 
Moments,  
Extends, 
Mean/variance over 
voxels, 
Surface information. 

Velocity,  
Acceleration,  
Self-rotation,  
Swirl, 
Extension, 
Expansion,  
Shrinkage, 
Change in a feature 
attribute,  
Mean/variance over 
time. 

Rotation around a 
feature, 
Distance,  
Relative orientation, 
Nearest-neighbour 
information, 
Variable 
difference/sum, 
Mean/variance over 
features. 

Table 1: Three different attribute categories and examples for each category 
     Next step is feature tracking (Figure 2b). Feature tracking 
correlates the features from the previous time step ti-1 to the next step 
ti [2]. This correlation information is saved in a feature history. In 
this step time-dependent feature attributes can also be computed 
(examples are listed in Table 1). These are the attributes derived by 
jointly considering the current and previous spatial-feature 
attributes. They can also define the change in a feature attribute over 
a specified duration. Accessing a specific feature’s attribute in the 
previous time steps requires tracking information, i.e., feature 



history. An example of this is the velocity. Other attributes are listed 
in the middle column of Table 1.  
     Concurrently with feature tracking, one can also compute feature-
to-feature attributes. These are the attributes that are computed by 
comparing a feature to neighbouring features in the same time step. 
They can be derived from feature attributes or time dependent 
feature attributes. For example, the mean (or variance) of a feature 
attribute can be computed over the neighbour features.  
     In the next step groups are determined (Figure 2c). A group is a 
set of coherent features that are associated together based on some 
criteria. These criteria can be expressed in terms of any combination 
of the feature attributes. A list of sample attributes can be found in 
Table 1. For instance, the grouping criteria can be geometry, 
distance, shape, rotation or orientation based. For a group, all these 
criteria can be combined and expressed within a single “similarity” 
function which is used by a clustering algorithm to determine the 
groups (See Section 3.1.1). Once groups are determined, spatial 
group attributes can also be computed in this step. Spatial group 
attributes are defined similar to the spatial feature attributes. They 
summarize the spatial properties of the extracted group and its 
member features. 

 
    Tracking groups is the next step (Figure 2d). Group tracking 
correlates the extracted groups in time step ti to the groups in time 
step ti-1. Once computed, this correlation information is saved as 
group history. Time-dependent group attributes are also computed in 
this step by using the group history. Time-dependent group attributes 
are defined similar to the time-dependent feature attributes. These 
are the attributes derived by using the current and previous spatial-
group attributes.  
     Once groups are determined and tracked, Group-to-group 
attributes can be computed. These attributes are also defined similar 
to their feature counterpart, i.e., feature-to-feature attributes. They 
are computed by comparing a group to one another or to a certain 
number of neighbour (K-Nearest) groups in the data. 
     The last steps involve creating super-structures of groups (Figure 
2e). If the domain has super-structures (groups of groups) that are 
defined with a different set of criteria, then similar to the group 
extraction step, super-structures can be extracted by using the related 
similarity function for the super-structures. At this step, each group 
is assigned to a super-structure by a clustering algorithm. Spatial 
super-structure attributes are also computed at this step. These 
attributes are also defined similar to the spatial-feature attributes. 
They summarize the properties of the super-structure and its member 
groups. Furthermore, time-dependent super-structure attributes can 
also be defined similar to the time-dependent feature attributes. 
These are the attributes derived by using the current and previous 
spatial- super-structure attributes.  
     Once defined, all the higher level structures (e.g. groups of super-
structures) can be recursively extracted and tracked in a similar way 

to the super-structures. And their associated attributes can be 
computed. 
     Time-varying visualization uses the tracking results at each 
structure level. Therefore once the tracking is performed and the 
related time-varying attributes are computed, the associated level 
structures can be visualized. In the following sections we will focus 
on clustering, group tracking and group visualization in detail.  

3.1 Grouping via clustering 

Once features are extracted and their feature-to-feature attributes are 
computed, they can be grouped using a clustering algorithm. The 
focus below is on simulations where features cluster together and 
then act in groups. Hierarchical and partitioning clustering 
algorithms are two main types of similarity based clustering methods 
[33], [34]. Hierarchical clustering seeks to build a hierarchy of 
clusters. It either starts from each individual data object as a cluster 
and then merges two most similar clusters recursively until only one 
cluster is left (agglomerative clustering); or it starts from the whole 
collection of data as a cluster and split the data set recursively until 
reaching a pre-specified cluster number. Partitioning clustering, such 
as the K-means algorithm, divides data objects into a number (often 
specified by a priori K value) of clusters according to some 
optimization criterion. Hierarchical clustering yields a hierarchical 
structure besides the final cluster information. Hierarchical clustering 
does not require a pre-specified number of clusters as opposed to the 
partitioning clustering. Moreover, hierarchical clustering does not 
require any initialization parameters as opposed to K-means 
algorithm that require initial cluster centroids. However, there is a 
trade-off between these advantages of hierarchical clustering and its 
computational efficiency. For more information on the clustering 
algorithms please refer to the text books [35] and [36]. In this work 
we use hierarchical clustering to extract groups in our group tracking 
model. At each time step the clustering algorithm is run and groups 
are formed. 
    In a clustering algorithm, the features with the highest similarity 
are grouped into the same cluster. Notice that within a cluster, all the 
features should be similar to each other, while each of them should 
be dissimilar for the inter-cluster features. Similarity is defined in the 
next sub-section. 

3.1.1 Similarity Functions 

A similarity function is a function S:	ܴܴݔ → ܴ that provides a 
measure of the similarity between two given vectors in a similarity 
space [36]. These two given (input) vectors represent two individual 
features with their n attributes. For any two given vectors FA and FB, 
the similarity measure S(FA, FB) is the same as S(FB, FA), i.e., S(FB, 
FA) = S(FA, FB). Moreover, S(FB, FA) ≤  S(FA, FA) and S(FB, FA) ≥ 
0. Notice that if the vectors FA and FB are dissimilar, then the 
similarity measure is the minimum value, i.e., S(FB, FA) = 0. With 
these conditions in mind, a group can be defined in terms of a 
similarity function. This similarity function will have a nonzero 
similarity value for any two given features in a given group and will 
have a zero similarity value for any given two features from different 
groups. For example, distance based similarity functions yield a 
higher similarity value as the distance between two input vectors 
decreases; i.e., as the features get closer to each other, the similarity 
value increases. Another example can be a shape and distance based 
similarity function in which the features that are close to each other 
and look alike would give higher similarity values. A threshold can 
be set for the similarity function value to define the terms similar and 
dissimilar. A higher value of the similarity function implies a greater 
similarity between the given two features. Once the similarity 
function is defined or selected from an available list/library, the 
clustering algorithm can group the features based on this provided 
similarity function.  
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Figure 2: Group tracking framework 

(a)  (b) 

(c)  (d) 

(e)  (f) 



 
4 GROUP TRACKING & GROUP EVENTS 

Identifying the dynamics of structures (e.g., features or groups) 
requires correlating these structures over time and this correlation 
process is generally known as the correspondence problem [2]. The 
tracking step addresses the correspondence problem in the group 
tracking framework (in Figure 2d). Once we have identified groups 
and features in the data, we can identify what happens to groups over 
time. Similar to features, groups can merge, split, appear (birth), 
disappear (death) or continue (see Section 4.1 for details).   
     In the framework, group level tracking (matching) from one time 
step to the next can be performed by combining the feature tracking 
information of the current time with the extracted group information 
(as shown in Figure 2d). Clearly, if the features overlap in volume, 
then their groups also overlap in volume. Therefore, in this work we 
employ a volume overlapping schema to track groups.  

 
Even in the cases where the features do not overlap, their groups can 
still overlap if a group can be defined by a convex hull surrounding 
the member features since groups are bigger structures. In our model, 
each group has a list of its individual features and each feature has its 
group_ID. For reference, each feature is represented by Fk,j

i, where k 
is a unique feature identifier, j is the group identifier that the feature 
belongs to and i is the time step (ti) index. Similarly, each group is 
represented by Gj

i, where j is a unique group identifier in time step ti. 
Generally speaking, a particular group is the union of its member 
features and will assume that a group is a union of its member 
features, i.e., ܩ

 ൌ ⋃ F,


ୀଵ  where h is the number of total features 
within the group with the identifier j in time step ti. We use the 
following definition for volume overlap for groups which is an 
extension of the one in [19]: 
Overlap: If the group GA

i corresponds (matches) to GB
i-1, then some 

features from GA
i overlap with some features from GB

i-1. i.e.,  
ܩ
ିଵ ∩ ܩ

 	് ∅. By using this overlap definition, an overlap table 
can be computed between the groups from one time step to the next. 
The overlap table can be computed by using one of the following 
criteria: 
(1) Feature overlap criterion, (2) Feature number overlap criterion or 
(3) Convex hull overlap criterion. 

·Feature overlap criterion: This criterion uses the sum of 
overlapping feature volumes between the groups. Since we assume 

that a complete feature is a part of a group, a group’s volume can be 
computed by summing up the volumes of each member features. 
Figure 3 illustrates the tracking process with the feature overlapping 
criterion. The feature and group extraction steps (with attributes) are 
completed in the first time step t1. When the framework starts 
processing the next time step t2, the first step is extraction of the 
features and computing the feature attributes. Then features are 
matched to the ones in t1 by using the volume overlapping criterion 
[2]. Feature tracking relates features from t1 to the ones in t2. Assume 
that grouping is done based on the distance information only. In this 
case, groups can be extracted by using the spatial-feature attributes 
only. Group extraction yields GroupA, GroupB and GroupC in t2.  
Group tracking step creates the overlap table based on the feature 
overlapping criteria (instead of using the actual values computed in 
overlap table for feature tracking). For groups, overlap table is 
computed by using the entire volume of the joint member features 
between t1 and t2. This is shown in Table 2. 

 Group_1 Group_2 
GroupA FA 0 
GroupB FB FC ᴜ FD 
GroupC 0 FE 

Table 2: Overlap table by using the feature overlap criterion. 
Based on the overlap table, GroupA is matched to Group_1 and 
GroupC is matched Group_2 only. However GroupB is matched to 
both Group_1 and Group_2. The dominant group for Group B is 
Group_1 since the volume of FB is greater than the sum of volumes 
of FC and FD.  

·Feature number overlap criterion: This criterion uses the total 
number of overlapping features within each group. If the features are 
relatively homogeneous in volume and shape, then this kind of a 
simplification could work reasonably faster and accurate enough. 
However, matching/correspondence is a function of both time and 
spatial properties. Using only the number of matching features does 
not summarize the spatial attributes of groups properly since it 
ignores the volume or shape information and thus may not yield an 
accurate matching. Especially in cases where a threshold is used, the 
least matching groups with the least feature numbers can be ignored. 
However such groups might have bigger volume and might be the 
actual dominant matching groups. 

·Convex hull overlap criterion: This criterion first defines a convex 
hull for each group that comprise all the features within, and then 
perform a volume overlap test between the convex hulls for group 
matching. This criterion considers the spaces between the features as 
well. In this criterion the volume of the containing envelope of all the 
features in a group is used. Thus a convex hull of an oddly shaped 
group formed of 2 or 3 small features can contain a bigger volume 
and can overlap with other neighbour groups.   
    The only assumption that these above-mentioned overlapping 
criteria make is that features (and their groups) overlap from one 
time step to the next. Therefore even if no distance based similarity 
metric is used in the group definition, as long as the features overlap, 
one of the abovementioned criteria can still be used for tracking the 
groups. This is true since we also track the features in advance and 
have the feature correspondence list available already. In some cases 
where the data comes from an insufficient sampling rate, an overlap 
criterion (where available) can be derived by using shape, speed, 
volume, mass, min/max value, speed or acceleration information to 
estimate the best match for group tracking (as well as for feature 
tracking). 
     In our case study, the features are not homogenous in volume or 
in shape. Therefore, in this study we use the feature overlap criterion. 
A tolerance value can be used in an overlap table to ignore smaller 
overlaps [19]. This process helps eliminating unwanted small 
amounts of overlaps (matches) or detecting false events. Groups GA

i 
and GB

i-1 are matched, if:  
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Equation 1 defines the normalized volume difference test as in [19]. 
Tolerance is a domain dependent value. 

4.1 Group and cross-level events  

Feature tracking can characterize the evolutionary events (dynamics) 
of features such as merge, split, continue, birth (appear) and death 
(disappear) [2]. Similar to features, the higher level structures 
(groups) can split, merge, continue or die. However, these group 
events are slightly different than the ones defined for features. The 
difference is due to the fact that the features are unconnected in 
groups. Therefore we define the following events for groups: 
Birth: A new group of features is formed in the current time step and 
is not correlated to any group in the previous time step. i.e., if the 
group GA

i does not overlap any groups in ti-1, then the group GA
i is 

considered as a new born group. 
Death: An existing group of features in the previous time step 
disappears in the current time step. If the group GB

i-1 does not overlap 
any groups in ti, then the group GB

i-1 is considered as a disappearing 
group and the event is called a death event. 
Full Split: A single group GB

i-1 in ti-1 splits into a number of N groups 
(N>1) in ti. Each of these groups in ti  overlaps GB

i-1, i.e., ܩ
ିଵ ∩

ܩ
 	് ∅ for each jєN. 

Full Merge: This is the event where a number of N groups (N>1) in 
ti-1 merge to form a single group GB

i in ti. i.e., if a number of N 
groups in ti-1 merge to form a single group GB

i in ti, then GB
i overlaps 

each of N groups in ti-1, , i.e.,   ܩ
 ∩ ܩ

ିଵ 	് ∅  for each jєN.  
Partial Merge: This is the event where portions (or all) of N groups 
in ti-1 join other groups resulting in a lesser number (M) of total 
groups in ti. Different portions of a group in ti-1 can merge to several 
other groups in ti. Also note that different portions of different 
groups in ti-1 can merge to the same group in ti. Therefore the total 
number of N groups in ti-1 merge and form a number of M new 
groups (1<M<N) in ti, where each of these N groups in ti-1 overlaps 
each of the M groups in in ti. At the end, the total number of groups 
M in ti will be less than the total number of groups N in ti-1. 
Partial Split: This is the event where the portions of a number of N 
groups split from their groups to form M new groups, i.e., only the 
portions of N groups (N>1) in ti-1 form a total number of M new 
groups in ti. In this case, each of these N groups in ti-1, overlaps with 
each of the M groups in in ti. At the end, the total number of groups 
M in ti will be higher than the total number of groups N in ti-1. For 
example, the event where two groups form three groups is a partial 
split event in Figure 3. 
Continuation: If none of the above-mentioned events occurs, than 
this is a continuation event for the group. 
     In addition to these events, when hierarchical structures are 
considered, the cross-level events can also be defined and detected. 
Cross-level events are the events that happen between a structure and 
a higher level structure. For example, group tracking allows 
detecting a feature leaving its group to join another one (cross-group 
event).  
Cross-group: This is the event where a feature leaves its group to 
join another group. In this event, while at the group level, groups can 
remain the same (groups continue); at the feature level, a feature can 
move from one group to another and therefore, this event is different 
than the partial merge or split events. An illustration of this event is 
shown in Figure 4a. In the illustration, when we use the first level 
(feature) tracking, we only detect the split event that occurs within 
the Group_S (shown with solid blue arrows). However, when the 

group tracking is used, we can detect that a feature moves from 
Group_R in ti-1 to Group_S in ti (shown with the dashed arrow).  

5 VISUALIZATION 

The group tracking framework can visualize structures at a user 
specified level within a hierarchical structure. Specifically, the 
tracking results (group history) generated by the group tracking 
algorithm can be combined with common visualization techniques 
(such as isosurface or volume rendering) to visualize groups and 
their evolution in time varying simulations. For example, Figure 1-
(IV) shows an isosurface visualization of the evolution of a selected 
group (packet) over the first five time steps in the data. Alternatively, 
user can select to visualize the evolution of a selected feature over 
the time as in Figure 1-(III). In isosurface visualization, each group is 
given a unique colour. Group history is used to assign the same color 
to the same group over time. When the groups merge, the newly 
formed group can have the color of the dominating group. In this 
case, the dominance can be decided by volume, mass, extents or 
local extrema value similar to the method of [19]. Alternatively, a 
new color can be derived as a linear combination of the merged 
group colors. In this case, some distinctive attribute value can be 
used to weight the colors in the linear combination (such as the 
volume). Splitting groups can have the parent group’s color. Certain 
groups (or features) performing a specific event can be highlighted 
by decoloring all other groups (or features). This can be done by 
assigning a dull color (such as grey) to all other groups (or features) 
or by changing the opacity. In our applications, new born groups are 
assigned a randomly generated unique color, merging groups are 
assigned the color of the group with the maximum volume. All the 
children groups are assigned the parent groups’s color in the split 
events. An evolution of a selected group can be visualized over time 
by only showing the groups that interact with the selected group. 
     Similarly, various visualization schemas can be used for volume 
rendering. For example, merging, splitting or continuing groups can 
be assigned to specific transfer functions to highlight these events 
only.  

 

6 CASE STUDY  

We apply our group tracking model on wall bounded turbulent 
Direct Numerical Simulations (DNS). In wall bounded turbulent 
flow simulation, scientists are interested in searching for the 
existence of groups (called packets) formed by coherent but 
unconnected turbulent hairpin vortices.  
 

Figure 4: An illustration of cross-group event and a packet (group) in 
wall bounded turbulence simulations. (a) A cross-group event where a 
feature moves from Group_R to Group_S while the number of groups 
remains the same. (b) An illustration of a packet in wall bounded 
turbulence simulations. In a packet, yellow hairpins elongate to form a 
certain angle that is smaller than 45o. 
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6.1 Creating a domain specific similarity function 

A packet is defined geometrically based on both the distance and the 
angle (orientation) between the member features. An illustration of 
such a packet is shown in Figure 4b. This illustration is similar to the 
one in [37]. Commonly used similarity functions do not consider the 
orientation of features within a packet [34], [36]. Therefore in this 
section, we demonstrate an example to derive a domain specific 
similarity function for packet identification. The similarity function 
should provide a positive value for a pair of features in the same 
packet and a zero value for a pair of features from different packets. 
We define a packet as a set of features meeting all of the following 
three criteria: 
I. The distance between a given set of two features should be less 
than a predefined distance (threshold). 
II. The angle between two given features should be equal or less than 
45o. 
III. The packet should be elongated along the X axis such that the 
cross section (in y-z plane) increases along the X axis.  
    Various distance measures can be computed and used for the first 
criterion, such as the nearest neighbour distance (on the feature 
surface), the centroid distance or the distance between the local 
extrema points. We notice that the local maximum point of each 
feature localizes around the top of the feature. Therefore we use the 
distance between the local maximum points to simplify the 
computations. We used different thresholds parallel to each axis for 
the distance criterion.  
     In the second criterion, the angle between the two features can be 
computed in different ways. We can either use the moments [19], 
line fitting or representative points such as centroids or local 
extrema. Depending on the shape, the centroid may not be within the 
boundaries of a feature. In our case study, we observed that using the 

angle between the local maximum points was sufficient to define a 
packet. Therefore we use the local maximum points to describe each 
feature and to simplify the computations.  
    Thus by considering the above-mentioned three criteria, we can 
set three distinct functions namely A, B and C. Then, we can define 
the similarity function as the multiplication of these three functions: 
S(F1, F2) = ABC where F1 and F2 represents two individual features. 
In this equation, A checks for the distance criterion (I); B checks for 
the angle criterion (II) and C checks for the elongation criterion (III). 
If any of these conditions is not satisfied by the given two vectors, 
the final similarity value will become zero. This is the similarity 
function we derived and used in our application.  
    In a group not all the pairs of features have to be similar. For 
example feature F1 can be similar to the feature F2 but not to the 
feature F3. However, since feature F2 is similar to feature F3, all the 
features F1, F2 and F3 are considered the members of the same 
group. 

6.2 Data set and results 

In this example, we show results from the group tracking framework 
applied to a subset of a larger wall bounded turbulent DNS. The data 
set that we used in this study has 46 time steps with a resolution 
384x256x69. The variable being visualized is swirl magnitude. A 
threshold of 0.0005 was used to extract the features in all the figures. 
The features with a volume smaller than 25 are filtered and are not 
shown in the figures. The preliminary results of our group tracking 
algorithm are shown in Figure 1-(II). Figure 1-(IV) shows packet 
tracking of the circled Packet_A in the first 5 time steps. The 
individual hairpins were also tracked in subsequent time steps and an 
example hairpin tracking is shown in Figure 1-(III), while Figure 1-
(I) shows all the individual features in t1 where each feature has a 
different colour. In all figures, isolated groups are shown by 

Figure 5: Group tracking in wall bounded turbulent flow simulation. (a) visualizes all the determined groups in t1. Each group has a unique and randomly 
generated color.  (b) visualizes the selected Packet_A  from  (a) and tracks  it  in the first four time steps.  (c) visualizes all the determined groups with a 
smaller distance criteria in t1. (d) visualizes the selected Packet_X from (c) and tracks it in the first four time steps.
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lowering the opacity value for the background features from other 
groups. 
     We visualized the dataset by changing the grouping criteria 
values (such as the distance threshold or the angle threshold). All the 
thresholds were given by the domain scientist to reflect physically 
meaningful groups. Clearly, extracted groups get bigger as the 
distance threshold used in the distance criterion increases. This is 
shown in Figure 5. Figure 5a shows all the extracted groups with 
hierarchical clustering in t1 with a “large” distance threshold. There 
are 262 features detected and these features form a total of 79 
groups. The total number of features in a group varies between 1 and 
41. In both Figure 5a and 5c, each group is assigned a randomly 
generated unique color. Figure 5b focuses on a selected packet 
(Packet_A) from Figure 5a and visualizes it in the first four time 
steps. Figure 5c visualizes the same time step t1 as Figure 5a, but 
uses a smaller distance threshold in the similarity function (in the 
criterion I in Section 6.1). Notice that the total number of groups 
increases in the data as the distance threshold is decreased. In Figure 
5c, the total number of groups increases to 112, while the total 
number of features remains the same as in Figure 5a (262 features). 
The total number of features in each group varies between 1 and 26 
in Figure 5c. Packet_X in Figure 5c becomes a part of Packet_A 
when the distance threshold is increased in the distance criterion. 
Figure 5d focuses on the selected group (Group_X) and visualizes it 
in the first four time steps. Notice that the feature extents change 
from time step to the next. Since we visualize only so much of a 
volume as needed, the size of the volume appears to be changed from 
time step to time step in both Figures 5b and 5d. 

 
    Figure 6 shows an example of a full merge event of a selected 
packet (Packet_X shown in Figure 5c and Figure 5d) that occurs 
between the steps t8 and t9.  A full merge is an event where multiple 
groups merge to form a single group. In Figure 6, all the members of 
Packet_X and all the members of Packet_Y from time step t8 are 
found in a single packet in t9, signifying a full merge event. 
   Figure 7 shows a cross-group event. Consider the side view of 
Packet_1 and Packet_2 in t1  in Figure 7a. Packet_1 and Packet_2 in 
t1 overlap with the Packet_C and Packet_D in t2. There are three 
obvious possibilities that can be considered: 

I) both packets (Packet_C and Packet_D) are the result 
of a split event originating from Packet_1 while 
Packet_2 disappears, 

II) both packets continue where Packet_C = Packet_2 
and  Packet_D = Packet_1, 

III) A portion of Packet_1 merges to Packet_2 to form 
Packet_C in t2 and the remaining portion of Packet_1 
continues as Packet_D.     

Clearly, there is confusion here. This is neither a split nor a merge 
event of any group but a cross-group event. This is continuation of 
groups. None of the split or merge conditions is satisfied by the 
groups and the total number of overlapping groups in each time step 
does not change (there are two groups in each time step). This means 
that features from one group have transferred to another group 
(circled in black), indicating a cross-group event.    

 
Figure 7: Visualization of a cross-group event. (a) The side views (in x-z 
plane) of Packet_1, Packet_2, Packet_C and Packet_D are shown for time 
step t1 and t2. Features changing groups are highlighted within a black circle. 
(b) Top view (in y-x plane) of these same packets in step t1 and t2. 

7 CONCLUSION AND DISCUSSION 

In this work we present a framework that can track groups and 
groups of groups as well as the features. The framework uses the 
feature tracking model as in [19] and extends it for groups of features 
acting together. We apply this group tracking framework to a 
simulation of wall bounded turbulent flow and show how it can be 
used to identify, track and visualize packets (groups) and packet 
interactions. 
     In the framework, domain specific groups can be defined by first 
specifying the group criteria in terms of the computed attributes. 
These criteria help to define a similarity function. Then this 
similarity function is used by a clustering algorithm to assign 
features to groups. To track these determined groups, we reuse 
feature tracking results to avoid repeated computation of the same 
quantity such as volume overlap.  
    Our group tracking framework helps to answer a new set of 
questions regarding groups and their events. We define new types of 
events such as partial merge, partial split and cross-group events. We 
can also consider groups of groups using the same framework. 
Currently we are applying this approach to a larger simulation to 
define and find super-structures.  
    Group tracking serves as the basis for a more general approach to 
categorizing complex interactions and events in large scientific 
simulations. One such approach is activity detection where complex 
interactions of features or groups that span more than two time steps 
can be modelled and then detected in time varying simulations [38]. 
Both individual feature tracking and group dynamics are necessary to 
understand the complex dynamics that can occur in scientific 
simulations.  
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Figure 6: A full merge event. Two packets (Packet_X and Packet_Y) from 
time step t8 are merging to form a single Packet in time step t9. This is a full 
merge event since both groups form a single new packet. The visualization 
routine chooses the dominant group as being the Packet_X in this case based 
on the maximum feature volume criteria and assigns the color of Packet_X to 
the packet in t9.  
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