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a b s t r a c t

In this study, we introduce a set of new kernel functions derived from the generalized Chebyshev

polynomials. The proposed generalized Chebyshev polynomials allow us to derive different kernel

functions. By using these polynomial functions, we generalize recently introduced Chebyshev kernel

function for vector inputs and, as a result, we obtain a robust set of kernel functions for Support Vector

Machine (SVM) classification. Thus in this study, besides clarifying how to apply the Chebyshev kernel

functions on vector inputs, we also increase the generalization capability of the previously proposed

Chebyshev kernels and show how to derive new kernel functions by using the generalized Chebyshev

polynomials. The proposed set of kernel functions provides competitive performance when compared

to all other common kernel functions on average for the simulation datasets. The results indicate that

they can be used as a good alternative to other common kernel functions for SVM classification in order

to obtain better accuracy. Moreover, test results show that the generalized Chebyshev kernel

approaches to the minimum support vector number for classification in general.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Support Vector Machine (SVM) is a state of the art supervised
learning algorithm commonly used in many applications for both
regression and classification purposes as in [1–5]. Its theory is
based on the structural risk minimization by using the maximum
margin idea [1].

SVM is considered ‘‘state of the art’’ due to its strong general-
ization capability, but its generalization performance depends on
using two main steps. The first step is constructing the cost
function which needs to be optimized and the constraints for the
cost function [6]. The second step is using a kernel function that
maps the input data onto a higher dimensional feature space
where the data can be linearly separable [7]. An ideal kernel func-
tion should not require a parameter, while providing useful per-
formance for all applications. The Gaussian kernel function, which
is the most widely employed kernel by the SVMs, requires only
one parameter [1]. Choosing the optimal kernel parameter is another
problem, and there are various approaches proposed to find this
optimal parameter as in [8–10]. However, finding this optimal para-
meter may require additional computation including an additional
optimization which is time and power consuming.
ll rights reserved.
Recently the Chebyshev kernel has been proposed for SVM
and it has been proven that it is a valid kernel for scalar valued
inputs in [11]. However in pattern recognition, many applications
require multidimensional vector inputs. Therefore there is a need
to extend the previous work onto vector inputs. In [11], although
it is not stated explicitly, the authors recommend evaluating the
kernel function on each element pair and then multiplying the
outputs (see Chapter V). However, since the kernel functions are
defined as the inner product of two given vectors in the higher
dimensional space for SVM and since a kernel function provides a
measure for the similarity between two vectors, it would be
expected that instead of applying kernel functions on each input
element (feature), applying them onto vector inputs directly would
yield better generalization ability as we will discuss in the follow-
ing chapters. Therefore in this study we propose generalized
Chebyshev kernels by introducing vector Chebyshev polynomials.
Using the generalized Chebyshev polynomials, we construct a new
family of kernel functions and we show that they are more robust
than the ones presented in [11]. On experiments, the proposed
generalized Chebyshev kernel function gives its best performance
within a small range of integer numbers of the kernel parameter.
This property of the kernel function can be used to construct SVMs,
where one needs to use semi-parametric kernel functions by
choosing the kernel parameter from a small set of integers. In this
study, we also show how to construct different kernel functions by
using the Generalized Chebyshev Polynomials. In order to capture the
highly nonlinear boundaries in the Euclidian space, the weighting
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dx.doi.org/10.1016/j.patcog.2010.12.017


S. Ozer et al. / Pattern Recognition 44 (2011) 1435–14471436
function can be modified. Therefore in this study, we modify the
generalized Chebyshev kernel for better accuracy by changing the
weighting function with an exponential function and propose the
modified Chebyshev kernel function. In simulations, we also com-
pare the proposed kernel functions to the other commonly used
kernel functions. Experimental results show that the proposed set
of new kernel functions, on average, show better performance than
all other kernel functions used in the test. Moreover, during the
tests, we observed that the generalized Chebyshev kernel function
approaches the minimum support vector (SV) number in general.
This property can be useful for the researchers who need to reduce
support vector number in their datasets.
2. Support vector machine

The fundamentals of SVM can be traced back to the statistical
learning theory [1]. However, in its current form, SVM is a
deterministic supervised learning algorithm, rather than being a
statistical learning method. SVM has several different variations
based on its cost function as in [1,6], but regardless of these
variations, the fundamental form of SVM is based on the idea of
inserting an hyperplane between the two (binary) classes which
can be done by either inserting such hyperplane in the current
data space, (linear SVM), or in the higher dimensional space by
using the kernel functions (nonlinear SVM). SVM uses the follow-
ing formula to find the label of a given test data [1,12]:

f ðxÞ ¼ sgn
Xk

i ¼ 1

aiyiKðx,xiÞþb

 !
ð1Þ

where ai is nonzero Lagrange multiplier of the associated support
vector xi, k the support vector number, K(.) the kernel function,
f(x) the class label of the given test data x. The class labels yi

corresponding to the SV xi, can only have binary values, i.e.,
yiA{�1, +1}, and b is the bias value. a values are found by
maximizing the following function:

wðaÞ ¼
Xl

i ¼ 1

ai�
1

2

Xl

i ¼ 1

Xl

j ¼ 1

aiajyiyjKðxi,xjÞ ð2Þ

subject to
Pl

i ¼ 1 aiyi ¼ 0 and aiZ0, where l is the number of
training samples. Thus xi input vectors, for which the correspond-
ing Lagrange multiplier ai is nonzero, are called support vectors in
the training data.
3. SVM kernel functions

An ideal SVM kernel function yields an inner product of given
two vectors in a high dimensional vector space where all the
input data can be linearly separated, [1,12]. Therefore, the inner
product of any given pair of transformed vectors in the higher
dimensional space can be found by applying the kernel function
onto the input vectors directly without the need of an appropriate
transformation function fð:Þ as

Kðx,zÞ ¼/fðxÞ,fðzÞS ð3Þ

where Kð:Þ is the kernel function. Some of the most common
kernel functions are listed below:
Gaussian kernel [1,16]:

Kðx,zÞ ¼ exp �
:x�z:2

2s2

 !
ð4Þ

Polynomial kernel [1]:

Kðx,zÞ ¼
/x,zSþ1

b

� �n

ð5Þ
Wavelet kernel [7]:

Kðx,zÞ ¼
Ym
j ¼ 1

Cos 1:75
xj�zj

a

� �
exp �

:xj�zj:
2

2a2

 ! !
ð6Þ

where the s, n and a are the kernel parameters for the Gaussian,
polynomial and wavelet kernels, respectively. b is the scaling
parameter for the polynomial kernel.

Kernel functions should be applied onto input vectors directly
instead of applying them onto each element and combining the
results by a product, since the kernel functions are supposed to
provide a measure of the correlation of two input vectors in a
higher dimensional space.

If we consider the family of the kernel functions where each
kernel function is applied onto the pairs of elements individually,
for a given pair of two input vectors x and z, the resulting kernel
can be formulated as

Kjðx,zÞ ¼/fðxjÞ,fðzjÞS ð7Þ

where Kj(.) is the kernel function evaluated on the jth elements of
the vector pair x and z. Thus the final kernel value can be found as

Kðx,zÞ ¼
Ym
j ¼ 1

Kjðxj,zjÞ ð8Þ

Both previously proposed Chebyshev kernel and the wavelet
kernel functions are constructed in the form of Eq. (8). This
approach, however, may yield poor generalization ability. Con-
sider that both input vectors x and z may be relatively closer to
each other and belong to the same class. In that case it would be
expected that the kernel function would give a relatively higher
value but if their one pair of elements yields a kernel value Kj(xj,zj)
close to zero then the whole product will yield a very small value
indicating that both vectors have a very small correlation. Thus,
SVM will be forced to learn along each element instead of along
each vector. (This situation is illustrated on spiral dataset experi-
ments in Figs. 3, 6 and 10.) Therefore, we believe that the kernel
functions should provide better results if they are applied onto
input vectors directly instead of applying the kernel functions on
each element pair first and then combining these results with a
multiplication operation.
4. Chebyshev polynomials

Chebyshev polynomials are a set of orthogonal polynomials
commonly being used in many applications including filtering.
The orthogonal set of polynomials is denoted by Tn(x) n¼0,
1,2,3,y for the x values between [�1,1]. The first kind of Chebyshev
polynomials Tn(x), of order n, is defined as [13]

T0ðxÞ ¼ 1

T1ðxÞ ¼ x

TnðxÞ ¼ 2xTn�1ðxÞ�Tn�2ðxÞ ð9Þ

The Chebyshev polynomials of the first kind are orthogonal
with respect to the weighting function 1=

ffiffiffiffiffiffiffiffiffiffiffiffi
1�x2
p

, therefore, for
given two Chebyshev polynomials, if integrated between the
interval [�1,1] we have [13]:

Z 1

�1
TiðxÞTjðxÞ

1ffiffiffiffiffiffiffiffiffiffiffiffi
1�x2
p dx¼

0 ia j

p=2 i¼ ja0

p i¼ j¼ 0

8><
>: ð10Þ

Although we do not have an analytical proof yet, during the
simulations, while exploiting the properties of the Chebyshev
polynomials for large n values, we noticed that the Chebyshev



Table 1
List of the generalized Chebyshev kernel functions up to 4th order.

Kernel

parameter: n

Kernel function: K(x,z)
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polynomials hold the following property:Pn
i ¼ 0 TiðxÞTiðzÞffiffiffiffiffiffiffiffiffiffiffiffi

1�xz
p o

Pn
i ¼ 0 TiðxÞTiðxÞffiffiffiffiffiffiffiffiffiffiffiffi

1�x2
p ð11Þ

where x and z are scalars.

0 1ffiffiffiffiffiffiffiffiffiffiffi

m�c
p

1 1þcffiffiffiffiffiffiffiffiffiffiffi
m�c
p

2 1þcþð2a�1Þð2b�1Þffiffiffiffiffiffiffiffiffiffiffi
m�c
p

3 1þcþð2a�1Þð2b�1Þffiffiffiffiffiffiffiffiffiffiffi
m�c
p þ

cð4a�3Þð4b�3Þffiffiffiffiffiffiffiffiffiffiffi
m�c
p

4 1þcþð2a�1Þð2b�1Þffiffiffiffiffiffiffiffiffiffiffi
m�c
p þ

cð4a�3Þð4b�3Þffiffiffiffiffiffiffiffiffiffiffi
m�c
p þ

ð8a�8aþ1Þð8b2�8bþ1Þffiffiffiffiffiffiffiffiffiffiffi
m�c
p

5. Chebyshev kernel: previous work

The Chebyshev kernel for the given scalar valued inputs x and z

is defined as [11]

Kðx,zÞ ¼

Pn
i ¼ 0 TiðxÞTiðzÞffiffiffiffiffiffiffiffiffiffiffiffi

1�xz
p ð12Þ

For instance, for scalar values, 3rd order orthogonal Chebyshev
kernel is defined as

Kðx,zÞ ¼
1þxzþð2x2�1Þð2z2�1Þffiffiffiffiffiffiffiffiffiffiffiffi

1�xz
p þ

ð4x3�3xÞð4z3�3zÞffiffiffiffiffiffiffiffiffiffiffiffi
1�xz
p

� �
ð13Þ

As the Chebyshev polynomials are orthogonal only within the
region [�1,1], the input data needs to be normalized within this
region according to the following formula:

xnew ¼
2ðx�MinÞ

Max�Min
�1 ð14Þ

where Min and Max are the minimum and maximum values of
the entire data, respectively.

Although it is not clear how the kernel function has been
applied onto the vector inputs on the experiments in [11], the
computer code that has been sent by the authors of [11] allows us
to derive the following equation for the Chebyshev kernel:

Kðx,zÞ ¼
Ym
j ¼ 1

Pn
i ¼ 0 TiðxjÞTiðzjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�xjzj

p ð15Þ

where m is the dimension of the training vectors x and z.
6. Generalized Chebyshev kernels

Here, we propose a generalized way of expressing the kernel
function to clarify the ambiguity on how to implement Chebyshev
kernels. To the best of our knowledge, there was no previous work
defining the Chebyshev polynomials for vector inputs recursively.
Therefore for vector inputs, we define the generalized Chebyshev
polynomials as

T0ðxÞ ¼ 1

T1ðxÞ ¼ x

TnðxÞ ¼ 2xTT
n�1ðxÞ�Tn�2ðxÞ for n¼ 2,3,4,. . . ð16Þ

where TT
n�1 is the transpose of the Tn�1(x) and x is a row vector.

Therefore, if the polynomial order n is an odd number, the
generalized Chebyshev polynomial, Tn(x), yields a row vector,
otherwise, it yields a scalar value. Thus by using generalized
Chebyshev polynomials, we define generalized nth order Cheby-
shev kernel as

Kðx,zÞ ¼

Pn
j ¼ 0 TjðxÞT

T
j ðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a�ox,z4
p where a¼m ð17Þ

where x and z are m-dimensional vectors.
In Eq. (17), the denominator must be greater than zero:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a�/x,zS
p

40 ð18Þ

To satisfy (18), as each element in x and z vectors has a
value between [�1,1], the maximum value for the inner product
/x,zS is equal to

Pm
i ¼ 1 1¼m, thus minimum a value will be

equal to m which is the dimension of input vector x.
As a result, the 6th order Generalized Chebyshev Kernel can be
written as

Kðx,zÞ ¼
1þcþð2a�1Þð2b�1Þffiffiffiffiffiffiffiffiffiffiffi

m�c
p þ

cð4a�3Þð4b�3Þffiffiffiffiffiffiffiffiffiffiffi
m�c
p

þ
ð8a2�8aþ1Þð8b2�8bþ1Þffiffiffiffiffiffiffiffiffiffiffi

m�c
p

þ
cð16a2�20aþ5Þð16b2�20bþ5Þffiffiffiffiffiffiffiffiffiffiffi

m�c
p

þ
ð32a3�48a2þ18a�1Þð32b3�48b2þ18b�1Þffiffiffiffiffiffiffiffiffiffiffi

m�c
p ð19Þ

where a¼/x,xS, b¼/z,zS and c¼/x,zS. Also the first 4th order
kernel functions are listed in Table 1.

Fig. 1 shows the generalized Chebyshev kernel output K(z,x) for
various kernel parameters, where z changes within the range of
[�0.999, 0.999], and where x is fixed at a constant value. Fig. 1(a)
and (b) shows the kernel function K(z, 0.77), while Fig. 1(c) and (d)
shows the K(z,0) value and Fig. 1(e) and (f) shows the K(z,�0.77)
value for various kernel parameters.

Fig. 1(a), (c) and (e) shows the results by using Eq. (20):

Kðx,zÞ ¼
TnðxÞTT

n ðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�ox,z4
p ð20Þ

Notice that Eq. (20) differs from Eq. (17) since it does not have
the summation term in it. Fig. 1(b), (d) and (f) show the result by
using Eq. (17). One can observe that, without using the sum, the
kernel function cannot be used in SVM for the similarity purpose.
The generalized Chebyshev kernel function shape is not sym-
metric around the x-value, and can be asymmetric as shown in
Fig. 1(b) and (f). Unlike the Gaussian kernel whose shape can be
altered by the kernel parameter only, the Chebyshev kernels also
alter their shape based on the input values.

The following two subsections briefly discuss the validity and
the robustness of the generalized Chebyshev kernel.

6.1. Validity

To be a valid SVM kernel, a kernel should satisfy the Mercer
Conditions [1,12]. If the kernel does not satisfy the Mercer
Conditions, SVM may not find the optimal parameters, but rather
it may find suboptimal parameters. Also if the Mercer conditions
are not satisfied, then the Hessian matrix for the optimization
part may not be positive definite.

Therefore we examine if the Generalized Chebyshev kernel
satisfies the Mercer conditions:

Mercer Theorem: To be a valid SVM kernel, for any finite
function g(x), the following integration should always be non-
negative for the given kernel function K(x,z) [1]:ZZ

Kðx,zÞgðxÞgðzÞdxdzZ0 ð21Þ



Fig. 1. x-value vs. the kernel output for 3 separate fixed values, i.e. for K(x,0.77), for K(x,0) and for K(x,�0.77) for various kernel parameters. (a) The results by using Eq. (20).

(b) The results by using Eq. (17). (c) The results by using Eq. (20). (d) The results by using Eq. (17). (e) The results by using Eq. (20). (f) The results by using Eq. (17).
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Proposition. The multiplication of two valid kernels is also a

valid kernel [12].
Therefore, we can express the nth order Chebyshev kernel as a

product of two kernel functions:

Kðx,zÞ ¼ Kð1Þðx,zÞKð2Þðx,zÞ ð22Þ

where

Kð1Þðx,zÞ ¼
Xn

j ¼ 0

TjðxÞT
T
j ðzÞ ¼ T0ðxÞT

T
0 ðzÞþT1ðxÞT

T
1 ðzÞþ � � � þTnðxÞT

T
n ðzÞ

ð23Þ

and

Kð2Þðx,zÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m�/x,zS
p ð24Þ

Consider that g(x) is a function where g: Rm-R, then we can
evaluate and verify the Mercer condition for K(1)(x,z) as follows by
assuming each element is independent from others:ZZ

Kð1Þðx,zÞgðxÞgðzÞdxdz¼

ZZ Xn

j ¼ 0

TjðxÞT
T
j ðzÞgðxÞgðzÞdxdz

¼
Xn

j ¼ 0

ZZ
TjðxÞT

T
j ðzÞgðxÞgðzÞdxdz¼

Xn

j ¼ 0

Z
TjðxÞgðxÞdx

Z
TT

j ðzÞgðzÞdz

� �

¼
Xn

j ¼ 0

Z
TjðxÞgðxÞdx

� � Z
TT

j ðxÞgðxÞdx

� �� �
Z0 ð25Þ

Therefore, the kernel K(1)(x,z) is a valid kernel.

Theorem. Power Series of Dot Product Kernels:

If a kernel is a function of dot product:

Kðx,zÞ ¼ Kðox,z4 Þ ð26Þ

then its power series expansion [12], KðtÞ ¼
P1

j ¼ 0 ajt
j is a positive

definite kernel if ajZ0 where t¼/x,zS, for all j. As K(2)(x,z) is a

function of inner product t, we can find its Maclaurin expansion, and

the expansion coefficients. If all the coefficients are non-negative for

the expansion, then this kernel will be a valid kernel

KðtÞ ¼ Kð0Þþ
X1
j ¼ 1

Kjð0Þ

j!
tj ð27Þ

where jth derivative is defined as

Kjð0Þ ¼
djKðtÞ

dtj

����
t ¼ 0

¼

Qj
k ¼ 1 2k�1

� 	
2jmð2jþ1Þ=2

ð28Þ

So the Maclaurin expansion takes the form of

Kð2Þðx,zÞ ¼
1ffiffiffiffiffi
m
p þ

X1
j ¼ 1

m�ð2jþ1Þ=2ox,z4 j

2jj!

Yj

k ¼ 1

ð2k�1Þ

 !
ð29Þ

where each coefficient is positive since mZ1, hence K(2)(x,z) is a
valid kernel function too.

As a result the kernel Kðx,zÞ ¼ Kð1Þðx,zÞKð2Þðx,zÞ is also a valid
kernel.

6.2. Robustness

The previously proposed Chebyshev kernel suffered from ill-
posed problems as mentioned in [11]. The main reason for the
ill-posed problems was the square-root at the denominator of the
kernel function. When the value of

ffiffiffiffiffiffiffiffiffiffiffiffi
1�xz
p

is very close to zero,
the kernel value may yield an infinitely big number that can affect
the Hessian matrix badly, forcing it to become singular. Although
a small e-value can be added to this expression to avoid division
by zero, it still affects the Hessian matrix and it may be needed
to re-set for each dataset. Alternatively, using another function
such as

ffiffiffiffiffiffiffiffiffiffiffi
q�xz
p

helps to overcome this problem; however, such
function reduces the performance of the previously proposed
Chebyshev kernel function for SVM; as the q value increases the
effect of the denominator will vanish by converging to a constant
value. The generalized Chebyshev kernel particularly solves this
problem as it uses the function

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�/x,zS
p

as the denominator.
Under the assumption of each element and each vector are I.I.D.,
then the probability of this function being zero is less than the
probability of the function

ffiffiffiffiffiffiffiffiffiffiffiffi
1�xz
p

being zero for m41. Therefore
in real world applications where often mb1, the ill-posed problem
which is caused by the denominator being zero will be elimina-
ted with a higher probability, if one employees the generalized
Chebyshev kernel function.

In experiments, we also show that the generalized Chebyshev
kernel is also more robust with respect to the kernel parameter
when compared to the Chebyshev kernel.
7. Modified Chebyshev kernels

By introducing the use of the generalized Chebyshev poly-
nomials, we make it easier to derive new kernel functions from
the generalized Chebyshev kernels. Based on the generalized
Chebyshev polynomials, one can construct new kernel functions
or can modify the generalized Chebyshev kernel as needed.
Generalized Chebyshev polynomials of the second kind (U(x)) as
defined in [14], can also be used to create another set of kernel
function by using another weighting function as follows:

Kðx,zÞ ¼
Xn

j ¼ 0

UjðxÞU
T
j ðzÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�ox,z4
p

ð30Þ

However, the preliminary test results showed very similar
results to the kernel function that uses the first kind of general-
ized Chebyshev kernel polynomials; therefore, in this study we
will not include Eq. (30) in the tests.

Here we provide an example on how to modify the generalized
Chebyshev kernels by replacing the weighting function in the
generalized Chebyshev kernel with an exponential function. As
exponential functions can decay faster than the square root func-
tion can, in Eq. (25) we replace the weighting function K(2)(x,z),
with an exponential function (which is a Gaussian kernel func-
tion) to obtain a more nonlinear kernel that captures the non-
linearity better along the decision surface where the surface can
change its shape more rapidly.

For this purpose, if we use the function Kð2Þðx,zÞ ¼ expð�g
:x�z:2

Þ which is a Gaussian kernel with s2 ¼ ð2gÞ�1, we can
obtain another valid SVM kernel function. The resulting new
kernel becomes:

Kðx,zÞ ¼

Pn
j ¼ 0 TjðxÞT

T
j ðzÞ

exp g:x�z:2
� 	 ð31Þ

where n is the Chebyshev polynomial order and g is the decaying
parameter.
8. Data normalization

Data normalization plays an important role for the generalized
Chebyshev kernel as K(2)(x,z) may become complex valued if the
condition

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�ox,z4
p

Z0 cannot always be satisfied. By nor-
malizing x and z values, this condition will always be satisfied.
Also the Chebyshev polynomials are defined for the values between
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[�1,1]. Therefore a data normalization step prior to SVM training is
essential.

One of the data normalization methods is using the maximum
value as the maximum of all the input vectors and using the mini-
mum value as the minimum of all the input vectors. Thus each ele-
ment in the dataset will be normalized according to Eq. (14). However
by doing so, the upper and lower limits for each feature will be the
same, and consequently, the Euclidian distance between the vectors
may be altered. Consequently, the results of this kind of normal-
ization may yield different (altered) generalization abilities as some
feature values may be normalized around zero because of the bad
scaling, thus essentially ignoring that feature value. Therefore, nor-
malization should be done for each feature separately by considering
each feature’s own maximum and minimum values carefully.

For a vector in the form of x¼ ½x1,x2,. . .,xm�, each ith element
of x should be normalized with respect to the maximum and
minimum values for that ith element in the whole dataset. Thus
the normalized value for each element is defined as

xi
new ¼

2ðxi�MiniÞ

Maxi�Mini
�1 ð32Þ

where Mini is the minimum value for ith elements among all the
possible input vectors and Maxi is the maximum value among all
the ith elements (features).
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Fig. 4. Spiral dataset test visualization with various kernel functions and kernel

parameters. Generalized Chebyshev kernel (4th order) svno:70.
9. Experiments

Here we test and compare various kernel function perfor-
mances by using different types of datasets. In multi-class experi-
ments, we trained SVM for each class separately as one vs. all. In
each experiment, we used the SVM toolbox available at [15]. For
both previously proposed Chebyshev kernel and its generalized
version, we added a small e value to the denominator to eliminate
the probability of division by zero. In Chebyshev kernel, we use
the function

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:002�xz
p

þe as the denominator for each test.
Spiral dataset: First, we have chosen spiral dataset to visualize

the kernel generalization capabilities. The spiral dataset has 92
data where each feature vector is 2 dimensional. The dataset has
46 data for each class. After the normalization step by using
Eq. (32), we used all the data for the training. For the testing step,
we created new test grid data within the interval of [�1,1]. We
plotted the contours according to Eq. (1) as shown in Figs. 2–10,
where the yellow circles represent the support vectors; the brown
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Fig. 8. Spiral dataset test visualization with various kernel functions and kernel

parameters. Gaussian kernel (s¼0.33) svno:70.
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Fig. 9. Spiral dataset test visualization with various kernel functions and kernel

parameters. Wavelet kernel (a¼1.5) svno:70.
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Fig. 10. Spiral dataset test visualization with various kernel functions and kernel

parameters. Wavelet kernel (a¼0.2) svno:62.
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region represents (+1) class, the blue region represents (�1)
class, and the black lines show the margins for each class where
wx+b¼1 or wx+b¼�1

As shown in Figs. 2–10, the generalized Chebyshev kernel and
the modified Chebyshev kernel functions show the minimum SV
number 68 while keeping the generalization ability correct for the
dataset. For the modified Chebyshev kernel we used g¼1.

Figs. 3 and 6 show the results obtained from the Chebyshev
kernel. Although the Chebyshev kernel function yielded the low-
est number of support vectors, it was not able to learn the
characteristics of the spiral dataset as shown in Figs. 3 and 6.
Thus it yielded poor generalization ability.

The result for the best Gaussian kernel parameter with the
lowest support vector number is shown in Fig. 8. The wavelet
kernel result, which has good generalization ability with the
lowest SV number is shown in Fig. 9. In Fig. 10, it is shown that
the lowest support vector number does not always yield good
generalization ability with the wavelet kernel.

Image segmentation dataset: We pick another dataset which
is currently available at http://www.cs.toronto.edu/�delve/data/
image-seg/, known as image segmentation data. The data has



Table 2
Image segmentation dataset test results with various kernel functions.

Chebyshev kernel Generalized Cheb. Modified Cheb. Gaussian kernel Polynomial kernel Wavelet kernel

SV no/Test% Best n SV no/Test% Best n SV no/Test% Best n/g SV no/Test% Best s SV no/Test% Best n SV no/Test% Best a

Sky 12/99.52 0 5/100 2 23/100 4/0.5 5/100 4.3 6/100 2 86/100 1.4

Path 74/97.10 3 11/99.38 1 104/99.81 6/3.0 106/99.71 0.43 21/99.76 6 105/99.71 2.2

Window 105/94 4 33/93.19 1 41/95.10 4/1.5 122/94.57 0.4 33/94.48 7 133/94.62 2.7

Foliage 38/94.52 0 30/96.90 4 44/97.10 4/0.5 28/96.71 1.4 34/97.29 8 132/95.52 2.7

Cement 122/94.00 4 31/92.33 4 54/97.14 3/2.0 88/97.00 0.5 39/95.33 12 88/97.00 1.7

Brickface 29/97.57 0 18/99.00 14 30/99.48 3/1.5 93/99.48 0.4 13/99.10 2 53/99.48 1.4

Grass 20/99.48 0 11/99.86 6 28/99.86 4/0.5 6/99.86 11 7/99.86 2 85/99.86 1.4
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Fig. 11. Gaussian kernel parameter vs. performance.
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Fig. 12. Wavelet kernel parameter vs. performance.
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Fig. 13. Generalized Chebyshev kernel parameter vs. performance.
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7 different classes of images. It has 210 data for training and
another 2100 data for testing. Each vector has 18 elements with
different minimum and maximum values. For the training, we
have 30 data for the class (+1) and 180 data for the class (�1) and
similarly for testing, we have 300 vs. 1800 data, respectively for
each class.

Training error was 0 on all experiments. However, on testing
step, the kernel functions showed different performance values
on different classes and there was no such winning kernel showing
the best performance on every class as shown in Table 2. The
modified Chebyshev kernel performed better than others on aver-
age. The best performance values with the lowest SV numbers are
shown in bold. For the Modified Chebyshev kernel, we heuristically
found the g values.

Table 2 shows the test results for each class with different
kernel functions. We provide the accuracy vs. the kernel para-
meter values in Figs. 11–16 for each class. Figs. 12 and 15 indicate
that as the kernel parameter increases, the Chebyshev kernel and
wavelet kernel decrease their performance and asymptotically
reach a low performance value. Figs. 17–22 show the SV number
vs. the kernel parameter value.

In all figures, g¼1 is used. In Figs. 12 and 17 we show that, as
the kernel parameter increases, the Chebyshev and wavelet
kernels require more SVs. Moreover, Figs. 13 and 15 show that
the classification accuracy of these two kernels asymptotically
decreases to a certain value as the kernel parameter increases.
However, the other kernel functions are more robust with respect
to the kernel parameter when compared to the Chebyshev kernel
and wavelet kernel functions.

Iris dataset: Iris dataset is another well known dataset used in
many pattern recognition tests. The dataset consists of 150 data
for 3 classes. Each vector has 4 features and each class has 50
vectors. We formed training data by taking the first 15 data of
each class. Then we used the remaining 105 data for testing. The
results are shown in Table 3.

In this experiment only the modified Chebyshev kernel showed
the best accuracy values among all 3 classes as shown in Table 3.
Figs. 23–25 show the test performance vs. kernel parameter plots for
the classes Virginica, Versicolour and Setosa, respectively. Fig. 26
shows SV numbers vs. kernel parameters for the Versicolour class.
Fig. 26 shows that the Wavelet and Chebyshev kernels require more
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Fig. 14. Modified Chebyshev kernel parameter vs. performance.
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Fig. 15. Chebyshev kernel parameter vs. performance.
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Fig. 16. Polynomial kernel parameter vs. performance.
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Fig. 17. Polynomial kernel parameter vs. SV number.
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Fig. 18. Modified Chebyshev kernel parameter vs. SV number.
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Fig. 19. Wavelet kernel parameter vs. SV number.
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SVs as the kernel parameter increases, and they approach the
maximum training sample numbers. In contrast, the generalized
Chebyshev kernel yielded low number of SVs for all 3 classes.
Breast Cancer Wisconsin dataset: This is another dataset cur-
rently available at [17]. This dataset has 569 data where each data
vector has 30 features. The data has only two classes: malignant and
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Fig. 20. Chebyshev kernel parameter vs. SV number.
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Fig. 21. Gaussian kernel parameter vs. SV number.
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Fig. 22. Generalized Chebyshev kernel parameter vs. SV number.
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benign. We used the first 50 data of each class for training and
used the remaining 469 data for testing. The test results are shown
in Table 4.
For the Wisconsin breast cancer dataset, the Generalized
Chebyshev kernel yielded the best classification accuracy to separate
the benign region from malignant region in the higher dimensional
space. Fig. 27 shows the kernel parameter vs. test performance for
each kernel function. Fig. 28 shows that the Wavelet and Chebyshev
kernels require more training samples and use them all as SV as the
kernel parameter increases and after a certain value they reach to
the maximum training sample number.
10. Discussion on the experimental results

Test results show when the kernel function is in the form of
Eq. (8), the generalization ability of resulting SVM may not be as
desired (as shown in Figs. 3, 6 and 10) although the training step
of SVM classification may yield zero error and the training data
may be learnt with a lower number of support vectors. On average,
both previously proposed Chebyshev and wavelet kernels decrease
their performance by demanding more training data as the kernel
parameter increases. We believe that this is a result of applying
kernel functions onto each element and multiplying the outcomes
for multidimensional data. Therefore, the constructed kernel func-
tions should be applied onto each training vector directly instead of
applying them onto each feature pair first.

A future study may investigate the relationship between the
vector dimension and the kernel parameter. Intuitively, we think
that there is a loose connection between the Chebyshev polynomial
order and input vector dimension; however, as the polynomial order
has to be an integer and the Chebyshev coefficients for the Chebyshev
polynomials increase rapidly by the polynomial order, keeping
the kernel parameter as low as possible would be desired.
Therefore, the kernel parameter should be chosen among a few
values, such as 3, 4, 5 or 6. In contrast, notice that although other
kernel functions may find lower SV numbers for some certain
cases, in general the Generalized Chebyshev Kernel yields a low
number of support vectors in almost every test. Although this is
directly related to the shape of the kernel function, this property
may also be a result of the orthogonality feature of the Chebyshev
polynomials as the generalized Chebyshev kernel function is
constructed from an idea that is similar to the orthogonality
property of the Chebyshev polynomials.

Generalized Chebyshev polynomials of the second type (U(x)),
[14] can also be derived by using the same idea as shown for T(x)
in this study. Such functions (e.g. Eq. (30)) can also be used for
kernel construction as mentioned in Section VII. However pre-
liminary test results indicated that their results were similar to
the kernel functions derived from the generalized Chebyshev
polynomials of the first kind. Therefore we did not include that
family of kernel functions and their results in this study. Also,
since exploiting the properties of the generalized Chebyshev
polynomials is out of the scope of this study, we did not study
such properties in detail, yet such a study could be useful to
construct new kernel functions derived from generalized Chebyshev
polynomials and may be the subject of a future work.
11. Conclusions

In this study, the construction of a set of new SVM kernel,
Generalized Chebyshev Kernel is presented. We clarify the ambiguity
on how to use Chebyshev kernels on multidimensional data by
proposing the use of Generalized Chebyshev Polynomials for vector
inputs and show how to derive new kernels based on them. Then, we
improve the average performance of Generalized Chebyshev Kernel by
introducing the Modified Chebyshev Kernel. Modified Chebyshev
kernel is another example for generating new kernel functions using
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Fig. 23. Kernel parameter vs. test performance for Virginica Class.
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Fig. 24. Kernel parameter vs. test performance for Versicolour Class.
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Fig. 25. Kernel parameter vs. test performance for Setosa Class.
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Fig. 26. Kernel parameter vs. SV number for Versicolour Class.

Table 3
Iris dataset test results with various kernel functions.

Chebyshev Kernel Gen. Cheb. Mod. Cheb. Gaussian kernel Polynomial kernel Wavelet kernel

SV no/Test% Best n SV no/Test% Best n SV no/Test% Best n/g SV no/Test% Best s SV no/Test% Best n SV no/Test% Best a

Setosa 3/100 0 3/100 3 3/100 9/1 3/100 1.8 4/100 3 16/100 1.2

Virginica 7/98.10 0 9/96.19 3 11/99.05 3/1 24/97.14 0.35 8/98.10 3 17/98.10 0.8

Versicolour 11/99.05 2 9/96.19 0 18/99.05 2/2 19/98.10 0.43 19/98.10 3 17/98.10 0.8

Table 4
Breast Cancer Wisconsin dataset test results with various kernel functions and with the best kernel parameter results.

Gaussian Mod Chebyshev Gen. Chebyshev Wavelet Polynomial Chebyshev

Breast cancer test% 95.52 97.01 97.23 90.83 96.38 95.95

Best kernel parameter: s¼12 n¼8, g¼0.25 n¼3 a¼1.4 n¼9 n¼0

SV no: 30 30 30 72 30 30

S. Ozer et al. / Pattern Recognition 44 (2011) 1435–1447 1445
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Fig. 27. Breast Cancer test data performance results.
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Fig. 28. Breast Cancer test data SV number results.
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the generalized Chebyshev polynomials. The test results show that
the modified Chebyshev kernel provides a competitive performance
to those commonly being used parametric kernel functions and its
performance can be better than other kernels with an appropriate g
value, as in Tables 2–4. Although, finding the optimal g value for the
modified Chebyshev kernel function seems similar to finding the
optimal Gaussian kernel parameter s, in the preliminary experi-
ments we observed that the Modified Chebyshev kernel is less
sensitive to the change in g value. Therefore we used set of a few
values (0.1, 0.25, 0.5, 1.0, 1.5, 2, 2.5, 3.0) for g to find the best
performance heuristically on the experiments.

Computationally, the generalized Chebyshev kernel function uses
less multiplication when compared to the previously proposed
Chebyshev kernel function. For a given pair of 2 input vectors, if
we ignore the addition and subtractions, the generalized Chebyshev
kernel needs about nð2mþ1Þ�mþr multiplications, whereas pre-
viously proposed Chebyshev kernel uses n3m�1þrm multiplica-
tions, where r is the number of multiplications needed to calculate
1=

ffiffiffiffiffi
ð:Þ

p
. Thus for m41, the Generalized Chebyshev kernel function

uses ðm�1Þðnþrþ1Þmultiplications less than the Chebyshev kernel
for a given pair of two input vectors.
In this study, we propose a set of new kernel functions based
on the generalized Chebyshev polynomials, and by experimental
results we show that both proposed kernel functions can provide
competitive classification results when compared to other com-
mon kernel functions. Figs. 11–16 show that the change in the
performance value with respect to the kernel parameter is less
than previously proposed Chebyshev kernel function on average
for both the generalized and the modified Chebyshev kernels.
Therefore based on the test results, we can also conclude that the
proposed kernel functions are also more robust with respect to
the kernel parameter change. This is another reason why we
consider the proposed generalized Chebyshev kernel as a semi-
parametric kernel function.

Finally, we can say that, while the generalized Chebyshev
kernel approaches the minimum support vector number, the
modified Chebyshev kernel approaches the maximum classifica-
tion performance in tests. One of the probable reasons for high
performance is that the modified Chebyshev kernel combines the
well-known performance of the Gaussian kernel with the Cheby-
shev polynomials. Therefore, this set of new Chebyshev kernel
functions can be used in classification applications as efficient
alternatives to those commonly used Gaussian, Polynomial and
wavelet kernel functions.
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