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Similarity Domains Machine
for Scale-invariant and Sparse Shape Modeling

Sedat Ozer

Abstract—We present an approach to extend the functionality and the use of kernel machines in image processing applications: we
introduce a novel way to design spatial kernel machines with spatial properties and demonstrate how those newly introduced spatial

properties enhance the possibilities of the use of kernel machines in image processing applications as a proof of concept. In this paper,
we demonstrate four particular extensions: (1) how to model shapes efficiently with spatially computed kernel parameters in a

geometrically scalable way; (2) how to visualize the kernel parameters precisely and intuitively on binary 2D shapes; (3) how to
construct a one-class classifier from the binary classifier in a straightforward manner without re-training and (4) how to use the

computed kernel parameters for filtering. The existing literature on kernel machines mostly focuses on estimating the optimal kernel
parameters via additional cost function(s). In this work, instead of employing an additional cost function to estimate the kernel-related
parameters, we investigate on an analytical solution to predict the actual kernel parameters locally and show how to build a spatial
kernel machine with our analytical approach. Classical kernel machines do not perform well on precise shape modeling with low
number of support vectors as demonstrated in this paper. However, we demonstrate and visualize that our analytical approach

provides a natural means to relate the kernel parameters to the 2D shapes for sparse shape modeling (where the shape boundary
represents the decision boundary). For that, we incorporate the selected kernel function’s geometric properties as an additional

constraint into the classifier’s optimization problem by defining an easy-to-explain and an intuitive concept: similarity domains. In our
experiments, we study and demonstrate how the resulting new kernel machine enhances the capabilities of the classical kernel

machines with applications on shape modeling, (geometrically) scaling the non-linear decision boundary at various scales and precise
visualization of the kernel parameters in 2D images.

Index Terms—Scalable kernel machine, local scale estimation, visualization of kernel parameters, explainable kernel machine, sparse
spatial kernel machine.
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1 INTRODUCTION

K ERNEL machines have long been used in image processing
applications and they are provided with well-established

theories and implementations. A particular existing challenge,
however, is explaining the computed kernel parameters to non-
expert users in an intuitive way. There is not much work available
relating the kernel parameters to more common and understand-
able concepts for non-expert users. Furthermore, while kernel
machines have been applied to many applications in the image-
processing literature, the most predominant use of them has been
the prediction of the image labels from sets of image datasets
with many instances. Recent examples can be found in [3], [4],
[9], [15], [21], [25], [26], [35], [38]. However, there is not much
work done to learn shapes with kernel machines from a given
single image data. In this work, our goal is to tackle with the
above-mentioned problems and extend the possible use cases of
kernel machines beyond their common use in image classification
and categorization applications as in the above-given examples,
while providing an easy to explain algorithm for non-experts. With
those goals in mind, we propose a novel approach to relate the
kernel parameters to the local properties of the data in a more
intuitive way as opposed to the existing solutions focusing on
computing the kernel parameters with additional cost functions.
In our approach, we relate the kernel parameters to the local data
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properties analytically and demonstrate how our resulting new
kernel machine enhances the capability of the classical kernel
machines in a more intuitive and easy to explain way. Our
experimental results show that our presented kernel machine yields
significantly less number of support vectors when compared to the
classical support vector machine (SVM) algorithm in almost all
our experiments and yields similar or better accuracy than that of
SVM. However, while we include accuracy comparisons to other
classifiers on several benchmarks, our main motivation in this
paper is beyond comparing only the classification accuracies: ex-
tending the functionality of kernel machines with new applications
and demonstrating them. Consider Fig. 1. It is not trivial to use
the learned parameters of any kernel machine implementation to
obtain the image shown in Fig. 1e from the image shown in Fig. 1a
via linear or straightforward operations. However, our proposed
kernel machine can learn the foreground class (the white area
in the image) in Fig. 1a by computing its own geometric kernel
parameters and their numbers automatically. Since the kernel
parameters have geometric meaning, they can now be used to
extract each region of interest (objects) in the image individually.
Furthermore, they also provide a mean to shift and (geometrically)
scale those objects individually.

Recent literature reports that employing multiple kernels can
yield higher performance when compared to using a single kernel
with predetermined kernel parameters in kernel machines. Among
those, while the earlier works studied this problem by assigning
different kernel parameters to each training sample (each support
vector) and by directly estimating the kernel parameters [8], [10],
recent papers focused on this problem under the multiple kernel
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Fig. 1: Visualization of the kernel parameters of similarity domains
machine (SDM) on the original binary image and use of them. (a)
Original image: 280x85 pixels. (b) Trained SDM result with total of 1
pixel-error at T=0.1. (c) Visualization of all the computed kernel pa-
rameters. (d) Visualization of only the foreground kernel parameters.
(e) Altered image with scaled and shifted objects. A region growing
algorithm is applied on the foreground kernel parameters to extract
each object. Then each object is individually scaled and shifted based
on their foreground parameters. Finally, one-class approximation of
SDM is applied on each of those scaled and shifted shapes to obtain
the final altered image.

learning (MKL) framework [1], [7], [19]. MKL model, assumes
that there is an available set of basis kernel functions provided
by the user and that the optimal kernel is a (linear) combination
of such basis kernel functions. The MKL framework includes
both the estimation of the (linear) model parameters of MKL and
the estimation of the parameters of the base learning algorithm
such as support vector machine (SVM) [13], [14], [17], [34],
[36]. Both direct-estimation and MKL-based techniques typically
include at least one additional optimization step for the estimation
of the optimal kernel parameters. In MKL-based techniques, the
assumption is that all the basis kernel functions and their total
number are already known or given by the user. The value of their
final kernel estimate and the optimal kernel weights change based
on the included (or user-given) set of basis kernel functions and
their kernel parameters. In all such approaches, the answer for
the question ”can we unify these individual optimization steps?”
remains a challenge.

In this paper, we present a geometry-based solution to the
above-mentioned problems: we unify both the estimation of the
kernel parameters and the hyper-parameters of the classifier in a
single optimization problem by relating the kernel parameters to
local data properties that are intuitive to explain for even non-
experts. Furthermore, once the parameters and support vectors are
learned by our binary classifier, we show that now it becomes pos-
sible to define a one-class classifier from the computed parameters
of our binary classifier by using only a subset of the computed
support vectors due to the geometric properties of our approach.
As opposed to forming a dedicated cost function for the kernel
parameters or for the kernel weights (as in the MKL model), we
force the base algorithm to use the local relations between the data
samples as a constraint (in this paper, we used Gaussian kernel
and its properties to define such local relations between the data
points).

We introduce the concept of similarity domains and use a
kernel function to define similarity domains geometrically in the

feature space. The concept of the similarity domains allows us to
define the above-mentioned unified optimization problem with a
single cost function in which both the kernel parameters and the
hyper-parameters of a kernel machine are estimated automatically.
This is also the first work that defines and computes the kernel
parameters geometrically in kernel machines and relates them
to the shapes intuitively. Due to the geometric nature of our
algorithm, we demonstrate that the decision boundary becomes
scale-invariant, i.e., the decision boundary (which can represent
a shape) can be up- or down-scaled at a given scale while
preserving the ratio between the SVs and the computed kernel
parameters. This property is related to the domain adaptation
problems and solves a sub-class of domain adaptation problems
in kernel machines where the new domain is a scaled version of
the original one. We demonstrate this property on scalable shapes
in this paper. Our presented algorithm utilizes both the global and
local properties of the training data. While the global properties are
summarized by the decision function of SVM, the local properties
are summarized by the kernel parameters. We call our approach
similarity domains machine (SDM). Our presented approach in
this paper will benefit many other learning algorithms and their
applications. Our experimental results show that our algorithm’s
performance can reach to that of the SVM algorithm and that our
algorithm yields lower number of support vectors almost in every
experiment.

In this paper, our focus is introducing new spatial capabilities
to kernel machines rather than focusing on the accuracy im-
provements on multi-image categorization applications. Our main
contributions include introduction of a novel technique to:

• Construct a novel spatial and scalable kernel machine with
explainable kernel parameters;

• Model shapes in terms of the spatially defined kernel
parameters;

• Reduce a binary classifier into a one-class classifier with-
out re-training;

• Visualize the kernel parameters on shapes.

2 RELATED WORK

Our algorithm is similar to various lines of works. While our
algorithm is also similar to radial basis function (RBF) networks, it
differs from RBF networks in many ways. A comparison between
the radial basis function (RBF) networks and a large margin
classifier (SVM) is already available in the literature in [30] and
most of those differences are also valid for our work, since our
algorithm is also derived from the large margin idea. In this
paper, we will focus on comparisons to the kernel machines and
provide a summary of the related work from the kernel machines
perspective. We will first compare our algorithm to other kernel
machines from the parameter computation perspective, then we
will compare our algorithm to domain adaptation related works.

Kernel parameter computation: Recent advances in kernel-
machines demonstrate that employing multiple kernels can yield
higher performance than using a single (and in many practical
applications hand picked) kernel parameter in kernel machines.
The earlier related works in kernel parameter computation such
as the ones reported by Chapelle et al. [8] and Bennett et al. [2]
focused on involving an additional numerical optimization step
for finding the optimal kernel parameters. Later on, related work
mostly evolved around the MKL framework [19]. The main goal
in MKL framework is estimating the optimal kernel function that
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could give the highest accuracy as a linear combination of multiple
kernel functions (i.e., in terms of t different kernel functions) as
in Eq. ((3)) (see next section). In that model, each basis kernel
Kr(x1,x2) defines a different kernel function with its own set of
specific kernel parameters (where r = 1, 2, 3, ..., t). Each weight
βr reflects the wellness or the contribution of the rth basis kernel
function among t available kernel functions. Notice that if the
included t number of functions in a MKL model cannot span
the optimal solution space, then any optimization step included in
the MKL model will yield a sub-optimal solution. Various MKL
techniques have been used for visual object recognition, feature
selection and data fusion applications. Examples can be found in
[4], [13], [33].

Existing related similar techniques focus on using an addi-
tional optimization step for kernel parameters as used in the
above-mentioned MKL techniques and in [8]. However, in our
proposed technique, instead of utilizing an additional optimization
step, we compute the kernel parameters analytically by utilizing
the local and spatial properties of the data. Therefore, we use
only one cost function in our algorithm. For example, the work
in [8] proposes a two-step minimax approach in which they first
maximize the margin of SVM to find the optimal αi, and then
minimize the model selection criterion T (see [8] for definitions
of T) with respect to the (kernel) parameters by using the current
estimates of the optimal αi values found in the previous step. This
two-step optimization procedure repeats itself recursively until it
converges. MKL algorithms also use similar two-step optimization
approaches. See some examples in [16]. However, as opposed to
using additional optimization steps, we simply use the maximum
margin (distance) idea locally to compute the kernel parameters
analytically. By using that idea, we utilize the geometric properties
of the kernel function locally within the SVM framework instead
of constructing a cost function to minimize the global error (risk)
for kernel parameter computation. We do not use the MKL model
in our algorithm.

Domain Adaptation: Existing related models for domain
adaptation problems include adapting the source (original) classi-
fier fS(x) (the decision boundary) to the target classifier fT (x) in
the target domain [11], [18], [20], [37]. Many of these works focus
on including data from both the source and target domains to adopt
a classifier to the target domain. While domain adaptation prob-
lems in computer vision varies, the focus of the existing literature
on computer vision has been the accurate image categorization in
different domains. One another important yet challenging domain
adaptation problem is sparse shape modeling via learning and
adopting that shape to different domains at different scales from
a given single image. There is not much work done for the shape
modeling problem under the domain adaptation related research.
In this paper, we present a novel kernel machine specifically
designed to deal with the sparse shape modeling and sparse shape
scaling problems. Our kernel machine reconstructs the existing
classifier, f(x), (i.e., the decision boundary) in new domains in a
straightforward-manner (without re-training) as a scaled version of
the original classifier at a given scale. This is illustrated in Fig. 2.

Another related subject is one-shot learning as in [12]. The
main idea in one-shot learning is learning from one sample by
modifying pre-trained models on unrelated classes. We demon-
strate that it is possible to learn and model a binary shape from
only one image with our algorithm without using additional pre-
trained models. We also demonstrate how to use that learned
model to scale the shape at different scales. Notice that while that

Fig. 2: This figure demonstrates a subset of the domain adaptation
problems where the classifier is trained only on Domain1 and then
needed to be applied in two new domains (Domain2 and Domain3)
which are the scaled versions of Domain1 at different scales s1 and
s2, respectively. The new decision function in each of those new
domains can be obtained from the original decision function (trained
on Domain1) as its scaled version at s1 and s2, respectively.

concept is also similar to one-shot learning, we do not incorporate,
require or use any additional model pre-trained (learned) on any
other dataset. In this work, we assume that the data given to us is
only a single image and we learn from that single image to learn
the shape model.

3 PRELIMINARIES

In this section, we provide the necessary background upon which
our proposed approach is built. Kernel machines estimate the class
label y of the test vector x in terms of the set of training data
D={(x1 ,y1),(x2 ,y2),...,(xn ,yn)}, where xi is the ith training
sample with the class label yi and n the total number of training
samples. The label y is estimated as y as below:

y = sgn(f(x)) and f(x) =
k∑
i=1

αiyiK(x,xi)− b, (1)

where the scalar αi is a nonzero coefficient (Lagrange multiplier)
for the support vector xi, yiε{−1,+1} the class label, k the total
number of support vectors (SVs) and b the bias value for the
hyperplane. K(.) is a Mercer kernel function [32] and is defined as
the inner product of two vectors in that higher dimensional space
such that: K(x,xi) =< φ(x), φ(xi) > where Φ(.) the mapping
function from feature space into the higher dimensional space and
where < . > is the inner product. The training step of the classical
SVM (the dual form) is formulated as follows:

max
α

Q(α) =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi,xj),

s.t.
n∑
i=1

αiyi = 0 and C ≥ αi ≥ 0

(2)

where C is a pre-specified upper bound (also known as the trade-
off parameter) for all αi. The training samples xi with nonzero
αi are called support vectors. The kernel function K(.) and its
parameters are predetermined (user given) in the classical SVM
[32]. MKL models the optimal kernel as a linear combination of
several basis kernel functions:

K(x1,x2) =
t∑

r=1

βrKr(x1,x2), (3)

where t is the total number of basis functions and βr is the weight
for the Kr(.). When the MKL model given above is jointly used
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Fig. 3: An illustration of similarity domains. Red points are the
samples from the (+1) class and the black points are from the (-1)
class. The support vectors (SV) are shown with an additional circle
around the point. The similarity domain of each SV is shown for the
P1, P2, ..., P6. The decision boundary (which may represent an edge
in an image) is shown in blue. Notice that the similarity domain of a
SV ends where it touches another SV from the other class.

with the SVM, the cost function Q(α) becomes Q(α, β) to be
optimized with respect to both α and β:

max
α,β

Q(α, β) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyj

t∑
r=1

βrKr(xi,xj),

s.t.
n∑
i=1

αiyi = 0,

t∑
r=1

βr = 1, C ≥ αi ≥ 0 and βr ≥ 0

(4)
See [17] for an overview of MKL algorithms.

As mentioned earlier, instead of formalizing the kernel pa-
rameters within an additional optimization framework, we take an
alternative approach and define them geometrically. While there
are many kernel functions proposed and used in the literature (see
[23], [24] for a set of sample kernel functions), in this work, we
use Gaussian kernel function to define the local data properties
spatially via similarity domains. The next section defines similarity
domains concept to formalize the geometric properties used in our
algorithm.

4 SIMILARITY DOMAINS

SVM is a learning algorithm that defines the decision boundary
in terms of SVs; see Eq. (1). Similar to SVM, our algorithm:
Similarity Domains Machine (SDM) also defines the decision
boundary in terms of SVs. Furthermore, SDM defines a local
similarity domain for each SV. Therefore, in this section, first
we define the concept of the similarity domains for each support
vector. We will then use that concept to design our novel classifier.

Similarity domains help us define a unified optimization prob-
lem in which the kernel parameters are computed automatically
and geometrically. We define the similarity domain of xiεR

d, as
the ball in Rd where the center is the SV xi and the ball radius is
ri. The ri is defined as follows:

For any (+1) labelled support vector x+
i , where x+

i εR
d and

superscript (+) represents the (+1) class:

ri = min(‖ x+
i − x−1 ‖, ..., ‖ x

+
i − x−k ‖)/2 (5)

where superscript (-) means the (-1) class.
For any (-1) labelled support vector x−i :

ri = min(‖ x−i − x+
1 ‖, ..., ‖ x

−
i − x+

k ‖)/2. (6)

In this work, we use Gaussian kernel function to represent
similarities and similarity domains:

Kσi(x,xi) = exp(− ‖ x− xi ‖2 /σ2
i ) (7)

where σi is the kernel parameter for SV xi. The similarity (kernel)
function takes its maximum value where x = xi. The relation
between ri and σi is as follows: r2i = aσ2

i where a is a domain
specific scalar constant. In our image experiments, the a value is
found via a grid search and we noticed that setting a = 2.85
suffices for all the images used in our experiments.

Note that, in contrast to [5], [31], our similarity domain
definition differs from the term ”minimal enclosing sphere”. In our
approach, we define the term similarity domain as the dominant
region of a SV in which the SV is the centroid and all the points
within the domain are similar to the SV. The boundary of the
similarity domain of a SV is defined based on its distance to the
closest point from the other class. Thus any given vector within a
similarity domain (a region) will be similar to the associated SV
of that similarity domain.

To illustrate similarity domains, please refer to Fig. 3. In the
figure, the dotted circles represent the similarity domains where
red ones represents the similarity domains for the (+1) class,
and the black ones represent the similarity domains from the (-
1) class. The dominant area of a SV vanishes as it touches to
the similarity domain of the closest SV from the other class. The
kernel parameter σi is a function of the radius of the similarity
domain of the SV xi. Notice that the point P1 is the closest SV
from the (+1) class to P4 and thus they both have the same kernel
parameter. Similarly, the SV pairs (P3, P6) and (P2, P5) share
the same kernel parameters, respectively. This example primarily
motivates our approach to assign different kernel parameters to
different training samples.

What that illustration in Fig. 3 suggests is that, we can
partition the classes on each side of the decision boundary in terms
of similarity domains that are represented by kernel functions.
We will use the similarity domain concept to define a kernel
machine that computes its kernel parameters automatically and
geometrically in the next section.

5 SIMILARITY DOMAINS MACHINE

The concept of similarity domains defines a distance-based ge-
ometric relation between the support vectors as mentioned in
the earlier section. We will use such geometric relation as an
additional constraint in our kernel machine and will represent
similarity domains with the kernel function Kσij(.) in our cost
function. Below optimization problem defines our kernel machine:
similarity domains machine with a kernel specific (geometric)
constraint.

max
α

Q(α) =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjKσij(xi,xj),

subject to:
n∑
i=1

αiyi = 0, C ≥ αi ≥ 0 for i = 1, 2, ..., n,

and Kσij(xi,xj) < T, if yiyj = −1, ∀i, j

(8)

where T is a constant assuring that the similarity between the two
closest samples from different classes remains smaller than the
middle value of the kernel function. The kernel parameter σij is
defined as σij = min(σi, σj). For a given pair of closest vectors
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xi and xj for which yiyj = −1, the kernel parameters are defined
as follows:

σ2
i = σ2

j =
− ‖ xi − xj ‖2

ln(K(xi,xd))
(9)

where xd is the most distant sample from xi. The decision
function takes the following form:

f(x) =
k∑
i=1

αiyi exp(−‖ x− xi ‖2

σ2
i

) (10)

where k is the total number of support vectors.
The decision function f(x) can be expanded as f(x) =

k1∑
i=1

αiyiKi(x,xi) +
k2∑
j=1

αjyjKj(x,xj) where k1 is the total

number of SVs near vector x such that the Euclidian norm
‖ xi − x ‖2 − σ2

i >> 0 and k2 is the total number of SVs
for which ‖ xj − x ‖2 − σ2

j ' 0 such that k1 + k2 = k. As a
result, local predictions can be made by the approximated decision

function f(x) '
k1∑
i=1

αiyiKi(x,xi).

The parameter T defined in Eq. (8) has an upper and lower
bound for SDM. The value of Gaussian kernel ranges between 0
and 1. Since T represents a low similarity value, it is bounded in
the range: 0 < T < 0.5 where 0.5 is the half of the maximum
kernel value, (i.e., max(K(.))/2 = 0.5).

Next, we will demonstrate how we utilize SDM to model
shapes (edges) as decision function and how we can scale that
decision function at different scales without the need for re-
training the classifier. We will also show a method on how we can
further reduce the computed parameters of SDM to a one-class
classifier as a post-processing technique.

5.1 SDM for Sparse Shape Modeling as One-class Clas-
sifier
Sparse shape learning is a challenge for classical kernel machines
as demonstrated in Fig. 4. Here, we demonstrate how we deal with
that challenge by using the computed kernel parameters of SDM.

SDM can model shapes sparsely with its computed kernel
parameters. For that, first the shape is learned as the decision
boundary with SDM from the given binary image. The training
of SDM can be done by labeling the shape (e.g., the white region
in Fig. 4a) as foreground and by labeling everything else (e.g.,
the black region in Fig. 4a) as background while using each
pixel coordinate as features. Once the image is learned, then, the
computed kernel parameters of SDM are used to model the shape
with our one-class classifier without performing any re-training.
Next, we define our one class approximation of the decision
boundary with SDM.

A One-class classifier can be obtained from the computed
parameters of SDM without performing any re-training. Here,
we show how using only the SVs and their associated kernel
parameters from one class is enough to approximate f(x) in

SDM. The SVs of SDM can be grouped as C1 =
s1⋃

i=1,yi∈+1
xi

and C2 =
s2⋃

i=1,yi∈−1
xi, where s1 + s2 = k, s1 is the total

number of SVs from (+1) class and s2 is the total number of
the SVs from the (-1) class. Since kernel functions now represent
local similarity domains geometrically, the original function f(x)
can be approximated by using only C1 (or by using only C2).
Consequently, we define the one-class approximation by using

only the SVs and their associated kernel parameters from the C1

as follows:

y = +1, if ‖ x− xi ‖< ri ,∃xi ∈ S1

otherwise y = −1,
(11)

where ri is the similarity domain radius for the ith support vector
xi (where xi ∈ C1 and r2i = aσ2

i ), x is the testing sample and
a is a domain specific constant. Since, a similarity domain of a
support vector from (-) class can never overlap with a similarity
domain from (+) class by definition (except one point where they
touch each other), we can use the similarity domains from only C1

to approximate the decision boundary (see Fig. 1 for an example).
Note that our one-class approximation is different than the

one-class SVM in [29]. One-class SVM in [29] focuses on learning
from the data of one class only via an optimization step. However,
in our approach, we obtain an approximated one-class classifier for
the same decision boundary that is learned by our binary classifier
(SDM) by utilizing the already-computed kernel parameters. In
our case, we do not need to perform (re)-training to obtain a one-
class classifier. Furthermore, we demonstrate the relation between
our binary classifier and our one-class classifier on binary shape
images where the decision boundary represents the edge of the
shape (for an example, please refer to Fig. 10 in Section VI).

5.2 Scale-invariant Kernel Parameters for Geometric
Scaling
The recent advances in the domain transfer and domain adaptation
problems do not address the geometric scalability of decision
boundaries in kernel machines. In this section, we address the
problem of scaling the shapes at different scales. By scale-
invariant, we mean that the relative ratio of the kernel parameters
of SDM does not change at different scales. Therefore, at any
given scale factor s we can redefine the decision boundary in any
new domain as follows:

fnew(x) = f(x, s) =
k∑
i=1

αiyi exp(−‖ x− sxi ‖2

s2σ2
i

) (12)

where fnew(x) is the desired decision function in the new domain.
In Eq. (12), the input parameter s is given by the user.

The scaling of the decision boundary is explainable here, as
we interpret the kernel parameters geometrically and compute
them accordingly in the algorithm. That allows us to preserve the
geometry of the shape by keeping the relative ratio between the
kernel parameters at different scales as such ratio will be retained
in the Euclidian space (see Section 6.1 for examples) as scale-
invariant.

5.3 Implementation
The optimization process of the SDM returns k SVs and their
associated scalar αi and σ2

i values during the training. After the
training, once all the σ2

i values are computed, we compute the cor-
responding ri. One of the key properties of our proposed algorithm
is that, it processes two training samples to compute the kernel pa-
rameters due to the constraint Kσij(xi,xj) < T, if yiyj = −1,
∀i, j. A similar approach of processing two samples at a time
is also used in Platt’s sequential minimal optimization (SMO)
algorithm [27]. Therefore we use SMO as the base optimization
technique for the optimization of Eq. (8) for SDM. Updating αi
and αj are done similar to the technique given in [27]. SDM can
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(a) Original im-
age

(b) SVM with
σ2=100, E= 309

(c) SVM with
σ2=20, E = 119

(d) SVM with
σ2=3.3, E = 51

(e) SVM with
σ2=1.4, E = 31

(f) SVM with
σ2=1.0, E = 3

(g) SDM with
T=0.05, E = 0

Fig. 4: This figure shows what the classical SVM ”learns” from the given training data containing 2D binary shape and how the SVM result
changes with respect to the kernel parameter of the Gaussian kernel. (a) The original training image (83x64 = 5312 pixels) is shown. Each pixel
coordinate (x1,x2) forms the training data and its color forms the label for that pixel. Once the SVM is trained, we used the same training data
(pixel coordinates) to visualize what the SVM actually learned at different kernel parameters. The error (E) is computed as the total number of
misclassified pixels. (b) Shows the SVM result with σ2 = 100 with E=309. The total number of SV is 1036 (19.5% of all pixels). (c) Shows
the SVM result with σ2 = 20 with E=119. The total number of SV is 1084 (20.4% of all pixels). (d) Shows the SVM result with σ2 = 3.3
with E=51. The total number of SV is 3261 (61.39% of all pixels). (e) Shows the SVM result with σ2 = 1.4 with E=31. The total number of
SV is 4778 (89.95% of all pixels). (f) Shows the SVM result with σ2 = 1.0 with E=3. The total number of SV is 4974 (93.64% of all pixels);
i.e., SVM used almost all the training data as SVs. (g) SDM result obtained with T=0.05 with E=0. The total number of SVs is 1082 (20.41%
of all pixels).

be utilized in various applications and enhances kernel machines
with its spatial properties. Further details and the analysis of the
optimization procedure of SDM are out of the scope of this paper
and will be reported in a future work.

5.4 Filtering via Kernel Parameters
Here, we demonstrate how geometrically computed kernel pa-
rameters can be utilized for a threshold-based filtering operation,
instead of re-training a machine learning algorithm, to obtain
different results at different parameters on a sample 2D image.
The similarity domains vary in size and that is reflected in the
computed kernel parameters as explained in the previous sections.
We use such variance in kernel parameters to filter some SVs
from the foreground. Once certain SVs are filtered, we can use the
remaining foreground SVs and their associated kernel parameters
to construct the filtered foreground (i.e., the new and altered
decision boundary) via one-class approximation.

For example, consider the image shown in Fig. 4a. First, we
train SDM using the full image data and obtain all the SVs and
their corresponding kernel parameters at T = 0.05. Then, we
select the foreground kernel parameters and their corresponding
SVs. The foreground kernel parameters are quantized into n bins.
See Table 1 for n = 10 case for Fig. 4a. In the table, the total
counts show the total number of kernel parameters in each bin.
We then simply threshold the kernel parameters to eliminate some
of the foreground SVs. Applying one class approximation on
those remaining foreground SVs yields different results at different
thresholds. Fig. 5 demonstrates sample filtering results obtained at
different thresholds.

TABLE 1: Bin centers for quantized kernel parameter values and
total number of kernel parameters that fall in each bin for the image
in Fig. 4a.

Bin Center: 1.29 3.19 5.09 6.99 8.90 10.80 12.70 14.60 16.51 18.41
Total Counts: 303 16 12 2 3 1 0 2 2 1

6 EXPERIMENTS

SDM is the first and only spatial kernel machine with auto-
matically computed and visually explained kernel parameters.
Therefore, in this section, our experiments focus on scalable

shape modeling problems to demonstrate the new (spatial) ca-
pabilities of our kernel machine rather than focusing on the
accuracy comparison between classifiers. However, in order to
demonstrate that SDM is also a machine learning algorithm that
can classify various datasets at a similar or better accuracy as
SVM does, we included multiple UCI benchmark datasets [20] and
compared SDM performance to that of SVM (we used libSVM
as implementation from [6]) and SimpleMKL [28]. In those
experiments, the accuracy is defined as percentage as follows:

100(1 −
l∑
i=1

sgn(‖ yi − yi ‖))/l where l is the total number

of test samples. In image experiments, we compute the error (E)
as the total number of misclassified pixels for the given image.
In all images, the radiuses are computed and visualized by using
the following relation: r2i = 2.85σ2

i . All the shown images are
resized to fit into the figures.

6.1 Shape Modeling and Scaling
Here, by sparse shape learning, we mean the sparse reconstruction
of shapes. We assume the objects in all the images are already
segmented and we use those segmentation results (binary masks)
as inputs.

We first demonstrate the performances of both SVM and SDM
on learning a shape as a decision boundary. SVM is not well suited
for shape modeling in general. To demonstrate that, we picked the
binary image shown in Fig. 4a. The training data consists of the
coordinates (x1, x2) of all the pixels in the image. The pixel colors
(being black or white) are used as labels (forming a total of labeled
5312 training samples). SVM is trained for σ2= 100, 20, 3.3, 1.4
and 1.0 values, respectively. Then, for each of those σ2 values,
we predicted the label of each pixel in the image with the trained
SVM (i.e., reconstructed the learned shape with the trained SVM).
The figures 4b, 4c, 4d, 4e, 4f show the results for each of those σ2

values respectively.
Fig. 4 demonstrates that it is hard for SVM to learn a shape

as the learning accuracy (as well as the total number of SVs)
depends on finding the appropriate kernel parameter. However,
even if the correct kernel parameter is found for low error, as
the figure suggest, SVM reduces the error value by converging
the total number of SVs to the total number of training data.
Fig. 4f yields 4974 SVs out of the total of 5312 training data. This
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(a) σ2
i < 1.29 (b) σ2

i > 1.29 (c) σ2
i > 5.09 (d) σ2

i > 8.90 (e) σ2
i > 14.60 (f) σ2

i > 16.51 (g) σ2
i > 18.41

Fig. 5: This figure shows various one class approximations for the shape shown in Fig. 4a after filtering. The filtering is performed as
thresholding where we kept and used only the set of kernel parameters (σ2

i ) that are either smaller or greater than the specified threshold.

(a) image (b) All ri (c) Foreground ri
Fig. 6: Visualization of the SDM kernel parameters at T= 0.1,
E= 4. In the figure, blue color represents the background and the
orange color represents the foreground. The red dots are the SVs
and yellow circles around them show the boundaries of similarity
domains as computed by SDM. The green lines are the radiuses (ri) of
similarity domains. Radiuses are obtained from the computed kernel
parameters. (a) Original image: 111x114 pixels. (b) Visualization of
all the radiuses from both background and foreground with total of
3050 SVs. (c) Visualization of only the foreground radiuses with total
of 1438 foreground SVs, (only 11.36% of all pixels).

TABLE 2: Total number of SVs and the total pixel error of SDM at
various T values are listed below for the images shown in Table 6.

T value: 0.05 0.1 0.15 0.2 0.3 0.35 0.4
Image1: 4007/0 3563/1 3255/3 3111/7 3019/14 3014/42 2981/70
Image2: 2717/0 2375/0 2109/4 2108/1 1966/14 1939/37 1887/41
Image3: 1481/0 1311/0 1237/0 1175/1 1117/5 1188/15 1117/16
Image4: 1848/0 1513/0 1391/0 1387/1 1365/12 1279/19 1181/42
Image5: 1717/0 1425/0 1314/2 1307/3 1118/12 1146/21 1028/16
image6: 1189/0 1136/1 1031/5 873/7 944/6 820/11 775/9

suggests on how SVM can learn shapes (by considering almost all
the training data as SVs). On the other hand, SDM was able to
yield 0 pixel error with only 1082 SVs where T is set to 0.05. The
number of total SVs (i.e., the total number of samples needed to
construct the decision boundary) can be further reduced from that
number by deriving a one-class SDM (see Section 6.3).

Fig. 6 visualizes the radiuses for similarity domains as com-
puted by SDM for another image. Fig. 6c visualizes only the fore-
ground similarity domains. For scaling the shapes, two examples
are shown in Fig. 9, where first the original shape is represented
as the decision function at a lower scale and then that decision
function is scaled at three different scales by using Eq. (12).

TABLE 3: Test results on 7-class UCI image-segmentation data set.
First two rows list the max accuracy (in %) and the total number of
SVs for SDM and SVM, respectively. Next two rows list the AUC
values for each classifier at their max accuracy parameters. The last
row shows the significance test results: H=1 means that the accuracies
are significantly different and H=0 means that the accuracies are not
significantly different at 5% significance level.

Classifier Class1 Class2 Class3 Class4 Class5 Class6 Class7
SDM: 96.71/42 99.67/35 99.86/13 96.81/30 99.67/11 98.76/21 95.24/34
SVM: 95.67/96 99.43/50 99.86/20 95.00/95 100.00/60 99.33/69 94.52/93
SDM AUC: 0.9778 0.9990 0.9995 0.9885 0.9999 0.9985 0.9600
SVM AUC: 0.9431 0.9988 0.9965 0.9741 1.0000 0.9995 0.9305
Hypothesis (H): 1 0 0 1 1 1 0

(a) Accuracy vs. T of SDM (b) # of SV vs. T of SDM

(c) Accuracy vs. σ2 of SVM (d) # of SV vs. σ2 of SVM
Fig. 7: This figure shows how SDM and SVM accuracies as well
as their total number of SVs change with respect to their individual
kernel parameters (where the parameter for SDM is T and for the
SVM it is the σ2 of the Gaussian kernel). The dataset is the UCI
image-segmentation dataset containing 18 dimensional data samples
from 7 different image classes. Each color represents an individual
class. Training is done as one vs. all for each class.

(a) ROC for Class1 (b) ROC for Class4 (c) ROC for Class7
Fig. 8: ROC plots for Class1, Class4 and Class7 for the 7-class UCI
image-segmentation data set. See Table 3 for the AUC values.

6.2 Robustness: The T of SDM vs. σ2 of SVM
Here we compare SDM to SVM in terms of accuracy & total
number of SVs (see Fig. 7 and Table 3), area under the curve
(AUC) values (see Table 3) and receiver operating characteristic
(ROC) curves (see Fig. 8). For that, we use a benchmark dataset
(image segmentation dataset) from the UCI repository [20]. The
dataset has 7 different classes where each data has 18 features.

Fig. 7 demonstrates how the accuracy and the total number
of SVs change with respect to T parameter of SDM and the
σ2 parameter of the Gaussian kernel of SVM. In the figure, the
σ2 value of SVM varies between 0.1 and 35 with increments of
0.1 and the T value of SDM varies between 0.015 and 0.5 with
increments of 0.01. As the σ2 value increases, the total number of
SVs converges to the total number of training samples for SVM.
However, increasing the T value does not change the total number
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Fig. 9: Two binary shapes are represented by SDM as decision boundary and they are scaled at a higher resolution by using only the SVs
at a given s value (instead of saving all the pixels). (a) Shows the 64x83 pixels original training data on 722x900 pixels black background.
SDM learns the 64x83 pixels image with zero pixel error. (b) 64x83 pixels original training data (shown in red box in (a)) is visualized as a
zoomed in image with standard interpolation (by using all of the 64x83 pixels). (c) the learned shape in 64x83 image is scaled at s=3 shown
on 722x900 background by using only its SVs, (d) the learned decision boundary in 64x83 image is scaled at s=5 and shown on 722x900
background by using only its SVs, (e) the learned shape in 83x64 image is scaled at s=10.75 and shown on 722x900 background. (f) shows
another 192x91 pixels image in red box (a new training data) on a 2100x1000 pixels black background. (g) shows the zoomed in version of
the original image. (h) the scaled binary image is reconstructed at s=3 with SVs only, (i) the scaled binary image is reconstructed at s=5 with
SVs only, (j) the scaled binary image is reconstructed at s=10.75 with SVs only, (all the images are resized to fit into the figure).

TABLE 4: Test results from various UCI datasets. (The best accuracy in % and the total number of SVs are shown).
Classifier Ionosphere SPECT Wine1 Wine2 Wine3 Iris1 Iris2 Iris3 GermanCredit BreastCancer
SDM: 89.35% - 32 89.84% - 59 91.30% - 9 65.22% - 25 76.09% - 24 100% - 3 97.78% -21 98.89% - 11 71.88% - 95 97.26% - 14
SVM: 75.60% - 40 89.84% - 73 82.61% - 40 65.94% - 40 80.43% - 40 100% - 9 96.67% - 20 96.67% - 21 71.63% - 144 97.60% - 41
SimpleMKL: 72.16% - 55 89.84% - 80 90.58% - 19 68.84% - 39 69.57% - 39 100% - 24 96.67% - 44 93.33% - 43 69.23% - 200 95.71% - 72

TABLE 5: Additional test results from various UCI datasets. (The best accuracy in % and the total number of SVs are shown).
Classifier Monk1 Monk2 Monk3 Liver Tae1 Tae2 Tae3 Magic Madelon HillValley
SDM: 89.81% - 60 79.63% - 114 94.44% -57 70.67% - 89 76.41% - 35 74.53% - 22 75.47% - 21 74.52% - 96 68.75% - 493 56.90% - 177
SVM: 87.93% - 124 82.18% - 169 96.99% - 68 70.67% - 110 75.47% - 44 71.70% - 38 77.36% - 35 69.42% - 172 64.40% - 600 51.97% - 199
SimpleMKL: 71.06% - 124 67.13% - 169 81.94% - 118 54.22% - 120 67.43% - 43 66.98% - 45 65.09% - 44 40.14% - 180 61.15% - 600 49.51% - 200

of SVs as drastically for SDM suggesting that the total number of
SVs does not converge to the total number of training samples for
none of the 7 classes in the data set. We also observe the same
behavior in other experiments (where the total number of SVs
did not converge to the total number of samples with respect to
the change in T ). Table 3 lists the maximum accuracy values and
their associated total number of SVs for both SDM and SVM. For
all the 7 classes, SDM yielded the minimum number of SVs when
compared to SVM, while the accuracy values remained close to
that of SVM for all 7 classes. Those results in Fig. 7 suggest that
SDM is more robust with respect to its parameter T when the
concern is the total number of SVs.

Fig. 8 shows the ROC curves for the classes 1, 4 and 7. For
the other classes, ROC curves were almost identical, as both SDM
and SVM yielded AUC value closer to 1.

In Table 3 (last row), we also show the McNemar test results
for the significance. In the test, the null hypothesis is that the
predicted labels of SDM and SVM have the equal accuracy for
predicting the ground truth labels and the alternative hypothesis
is that predicted labels have unequal accuracy. In the table,
hypothesis (H) is 1 when to reject the null hypothesis at the 5%
significance level and H is 0 when to not reject the null hypothesis
at the 5% level.

6.3 Approximation and Image Altering with One-class
SDM

Here we demonstrate how we can approximate the decision
boundary with one-class SDM approximation and alter the order
and the size of the objects individually in an image. The training
image is shown in Fig. 1a. SDM is trained by using the 2D pixel
coordinates and the result (reconstructed image with SDM) is
shown in Fig. 1b. Fig. 1c visualizes all the similarity domains for
all the SVs computed by SDM. The foreground SVs are selected
and kept along with their associated kernel parameters to form
one-class approximation. The selected SVs and their similarity
domains are visualized in Fig. 1d. As there are 5 distinct objects in
the figure, we further grouped the SVs and their associated kernel
parameters for each of those five objects from the foreground by
using a region growing algorithm. Then, we shifted and scaled
each of those objects individually at different scales by using
only their foreground SVs and their associated kernel parameters.
The scaling is performed by using Eq. (12). The resulting altered
binary image in Fig. 1e is obtained by using one-class SDM
classification by using Eq. (11) on the combination of those scaled
and shifted similarity domains. Fig. 10 demonstrates how much
error is obtained by using only the foreground SVs (6.4% of all
the pixels) with Eq. (11) for the image shown in Fig. 4a. To see
further results on the ratio of the foreground SVs to the total pixel
numbers, please refer to the D values in Table 6 for various images.
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(a) All the ri
from SDM

(b) Only fore-
ground ri

(c) One-class
approx.

(d) Approx. er-
ror, E = 4

Fig. 10: Visualization of the SDM kernel parameters (at T = 0.05, E =
0) and its one-class approximation are shown for Fig. 4a. (a) visualizes
all the similarity domains from both classes (total of 1082 SVs). (b)
visualizes only the similarity domains of the foreground with total of
342 SVs. (c) shows the one-class approximation by using the Eq. (11).
E = 4. (d) shows the approximation error in pixels by using only the
foreground SVs (342 SVs = 6.4% of all the pixel data).

6.4 Benchmark Comparisons on Higher Dimensional
Datasets

Here, we compare SDM’s classification performance to both SVM
and MKL on various UCI benchmark datasets. The results of
these experiments are summarized in Tables 4 and 5. The best
accuracies found by each algorithm (as percentage) along with the
computed SV numbers are listed for each algorithm. Each class
has been trained separately with one vs. all approach (for multi-
class datasets) and the individual results for each class are listed
in the tables. As demonstrated, SDM yields similar or better result
when compared to SVM and MKL, while yielding lower number
of SVs in almost all experiments.

7 DISCUSSIONS AND CONCLUSION

We introduced a novel scale-invariant kernel machine: Similarity
Domains Machine (SDM) that computes its own scale-invariant
kernel parameters automatically and geometrically. The existing
work related to kernel parameters mostly focused on utilizing
additional cost function(s) to estimate the kernel parameters. In
this work, as an alternative to those techniques, we introduced a
geometric approach to eliminate the additional cost function(s) for
estimating the kernel parameters and to explain the parameters to
non-experts in a more intuitive way. Our proposed approach yields
to obtain a scale-invariant classifier with scale-invariant kernel
parameters.

Our introduced similarity domains concept helps explaining
the kernel parameters intuitively to non-experts. Due to its geo-
metric properties, our novel classifier simplifies many problems
that are not trivial to solve with the classical kernel machines in
various image processing applications. In this paper, as a proof of
concept, we demonstrated how to deal with four of those problems
on 2D shapes: (1) a subset of the domain adaptation problems
where the classifier is trained on only the source domain while that
classifier needed to be scaled in new (target) domains; (2) forming
a one-class classifier from the already trained binary classifier in
a straightforward manner to approximate the decision boundary
without re-training; (3) how to use the computed kernel parameters
for sparse shape modeling; and (4) how to use kernel parameters
to further alter (filter) the decision boundary.

We demonstrated that SDM is not only capable of modeling
shapes efficiently, which can be considered as vectorizing the
pixel-based binary shapes at low SV numbers (see the D values in
Table 6), but also capable of scaling those shapes at different given

resolutions with its sparse modeling. That property can be useful
in many image processing applications (e.g., in computation of
image pyramids).

Note that there are some visualization tools already available
in the literature for machine learning such as t-SNE [22]. t-
SNE essentially is used as a dimensionality reduction algorithm
that reduces multidimensional data onto 2D or 3D space for
visualization through an optimization process in the literature.
However, in this paper, we use a classifier to utilize the classifier’s
kernel parameters on 2D datasets (images) without the need for
an additional tool. By visualization, one goal in this paper is
to demonstrate the accuracy of our proposed machine learning
algorithm on computing the kernel parameters geometrically on
2D shapes.

SDM forms local clusters defined by similarity domains within
each class. In this paper, while we limited our work with the
use of similarity domains in 2D shape modeling applications, we
believe that our presented approach will benefit many additional
image processing applications including (but not limited to),
graph construction from the labeled (image) dataset, outlier/noise
detection and feature matching applications.

Our approach can also be extended to some other kernel func-
tions that are a function of both distance and a scaling parameter
β such that: K(x,xi) = f(‖ x − xi ‖, β ). A future work may
involve studying the performance of other kernels within our SDM
framework.

SDM is a spatial kernel machine and as a classifier, it can
classify higher dimensional data yielding comparable results to
that of SVM with less number of SVs (see tables 3, 4 and 5). In
many cases, SDM yields even less then 50% of the total number
of SVs found by SVM. That makes SDM a good alternative to
SVM and to other kernel machines, where the concern is reducing
the total number of SVs.
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TABLE 6: Visualization of similarity domains on multiple shapes (images). Similarity domain boundaries are highlighted with yellow circles.
The first column shows the original binary image, the second column shows what SDM learns at T = 0.1 where E is the total pixel error. The
third column visualizes all the radiuses and SVs computed by SDM and the fourth column visualizes only the SVs and their radiuses for the
foreground (+1) class. D (shown in percentage) is the ratio of the total number of foreground SVs to the total number of image pixels.

(a) image1: 280x85 pixels (b) SDM result, T=0.1, E=1. (c) All ri, 3563 SVs. (d) 1459 SVs, D=6.13%

(e) image2: 192x91 pixels (f) SDM result, T=0.1, E=0. (g) All ri, 2375 SVs. (h) 1025 SVs, D=5.87%

(i) image3: 115x77 pixels (j) SDM result, T=0.1, E=0. (k) All ri, 1311 SVs. (l) 569 SVs, D=6.43%

(m) image4: 106x106 pixels (n) SDM result, T=0.1, E=0. (o) All ri, 1513 SVs. (p) 580 SVs, D=5.16%

(q) image5: 115x115 pixels (r) SDM result, T=0.1, E=0. (s) All ri, 1425 SVs. (t) 544 SVs, D=4.11%

(u) image6: 78x110 pixels (v) SDM result, T=0.1, E=1. (w) All ri, 1136 SVs. (x) 381 SVs, D=4.4%


