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Abstract—Predictive maintenance (PdM) has been an integral
part of large industrial sites collecting data from multiple sensors
to reduce the maintenance power and costs with the advent
of Industry 4.0. Two of the major problems in PAM used at
large industrial sites are: (i) the prediction of remaining useful
life (RUL); (ii) the prediction of the likelihood of failing within
a predefined time period. While data oriented maintenance
predictions were heavily focused on using classical techniques
for such problems, recent interest shifted towards utilizing AI
based solutions due to the better generalization capabilities of
deep solutions. Among the time-sequence based deep networks,
RNN, GRU and LSTM based networks are the most frequently
used solutions. GRUs have demonstrated their faster learning
capabilities with near or better prediction performance on certain
tasks already. However, predicting multiple PdM tasks including
both RUL and failure detection, simultaneously within the same
network in an end to end manner with GRUs has not been
much studied in the literature before. In this paper, we introduce
a solution to predict those two tasks simultaneously within the
same network based on GRUs. In our experiments we compare
the performance of GRU layers to LSTM and RNN layers and
report their performance on NASA dataset.

Index Terms—GRUs, Remaining useful life prediction, failure
prediction, predictive maintenance, time-sequence analysis

I. INTRODUCTION

Recent interest in industry 4.0 has increased the attention
on monitoring the condition of equipment in large production
sites [1]. Today, with the introduction of predictive mainte-
nance, it becomes a norm to collect data by installing multiple
sensors at various locations in such production sites where
aiming reduction in the maintenance related cost including
time, manual labour and the lost energy. The arrival of data
collection brings the need for better data processing and data
analysis tools to improve the performance of such production
sites while reducing the required resources for maintenance.

Predictive Maintenance (PdM) aims to decrease the number
of failure occurrences and the maintenance costs by predicting
such failures even before they occur. Artificial Intelligence
(AI) based techniques have been recent interests to predict
such occurrences. Among the Al techniques, the time sequence
analysis based techniques such as Recurrent Neural Networks
(RNN) [2], [3] and Long Short Term Memory (LSTM) [4] net-
works have been widely used. Recent interest mainly evolved
around LSTM and Gated Recurrent Unit (GRU) [5]-[8].

In this paper, we focus on Remaining Useful Life (RUL)
prediction and detecting the likelihood of a machinery to fail
within a specific time period. Unlike the existing literature,
we propose a combined GRU-based architecture to predict
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both RUL and likelihood of failure in an end-to-end man-
ner. While the literature mainly studied the performance of
different architectures for RUL prediction and machine failure
within a specified time period individually, there are not many
papers focusing on developing an end-to-end solution that
predicts both RUL (regression problem) and failure likelihood
(classification problem) within the same network. In this paper,
we focus on that problem to reduce the computation and
the required network size, while introducing a GRU-based
network to solve both problems together simultaneously.

II. RELATED WORK

Predictive maintenance has been a key subject for smart
manufacturing for many years. Therefore, the relevant liter-
ature covers a large set of approaches proposed. Most of
such approaches include classical techniques and deep learning
based techniques are more limited when compared to the
available classical techniques. For example, a rolling element
bearing’s RUL has been estimated using dynamic regression in
[9]. Other examples of predicting RUL in various setups using
classical techniques can be found in [10]-[13]. However, as we
introduce a deep learning based solution, our main focus here
is listing the relevant work from the deep learning perspective.

Deep learning based solutions have been recent focus
in predictive maintenance applications due to their superior
performance over classical techniques in many applications.
Among the available deep learning architectures, the ones with
the capability of sequential processing took the main attention
as PdM data is typically a time sequence. For example, in [2]
the use of RNN for RUL estimation problem is studied and it
is reported that RNNs can obtain better results when compared
to other classical methods. As another line of work, the
performance of LSTM based models was studied for PdM as
in [3], [4]. As an alternative to LSTMs, the GRU based models
have also been studied in the relevant literature recently. For
example, a two-step GRU based solution was proposed in [6]
for the RUL prediction problem. Another work in [5] also
supported the results of [6] stating that GRU based networks
perform faster with near or better performance when compared
to LSTM networks. LSTM and GRU being two successful
architectures, some papers focus on the comparison of those
two techniques as in [5], [8], [14]. It has been mainly reported
that the learning speed of the GRU based models has exceeded
the learning speed of LSTM based models and that they both
performed well with high efficiency in various PdM problems.
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Fig. 1: An RNN layer unfolding onto itself over time.
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When the goal is only predicting RUL, the work in [14]
reported that GRU can perform better than LSTM.

A more recent focus is using deep models that can jointly
learn multiple tasks simultaneously. In such simultaneous
learning problem, the goal is not predicting only one type of
task (such as detecting failure or detecting RUL individually),
but predicting multiple outputs jointly, e.g., detecting RUL
and likelihood of the failure of a given machinery. There
are not many papers available in the literature focusing on
such simultaneous learning problems in PAM. A close relevant
paper is [15] where the authors introduced an LSTM based
network proposed to combine both regression and classifica-
tion tasks for age prediction. Our work differs from all the
above-mentioned literature in multiple ways: (1) we introduce
using a GRU based architecture that jointly predicts both RUL
and likelihood of failure within a given time period; (2) we
compare the performance of three different networks based on
LSTM, GRU and RNN on the NASA dataset [16] for the joint
learning problem of RUL and the likelihood of the failure.

III. BACKGROUND

Recurrent Neural Networks (RNN): Recurrent Neural Net-
works are considered to be self-connected hidden layers where
each node within a layer is connected not only to the nodes
within the next hidden layer but also connected to itself. Fig. 1
illustrates the structure of a typical RNN layer (on the left) and
how it unfolds over consecutive time steps (on the right). The
figure is illustrated based on [6]. The RNNs include 3 main
aspects, i.e. input vector x, hidden layers h and the output
vector y. The hidden and output layers are updated via the
following formulas with the activation function f:

hi = fWhnhi—1 + Whawe),  ye = f(Wynhe) (1)
where Wy, Wh,;, and W, are the weight matrices for output,
recurrent and input layers, respectively.

Long Short Term Memory (LSTM): Long Short Term Mem-
ory has been proposed by Hochreiter and Schmidhuber in
1997 [17]. LSTM based networks have been successfully used
in many applications where the data is a time series as in [18].
The top illustration in Fig. 2, based on [6], shows the relation
between the inputs and outputs of an LSTM architecture.
Together with the feedback connections and gates, LSTM
constructs a cell structure to act like a memory and pass
information from start to the end. The input-output relationship
for each gate of LSTM is given below, where x is the input
and h is the output. f; is the forget gate’s activation, while 4,
is the update gate’s activation vector. The vectors oy, ¢; and
c; are output gate’s activation, cell input activation and state

c—-@ ® - o ha o ®  J -l
f it ® o o ® 21, i
HE EE o o i

het Iy f p
T 1 e

e,

(@) (b)
Fig. 2: Tllustration of LSTM (a) and GRU (b) respectively

vectors respectively. ¢, is the state from the previous time

step. W and U are weight matrices. The * corresponds to the
Hadamard product (element-wise multiplication).

ft = O'(Wfl‘t—FUfht_l), it = oWz + Uihy—1)  (2)

O = O'(Woxt + Uohtfl), ét = tanh(cht + Uchtfl) (3)

= fixci—1+ i xC, hy = op x tanh(cy) 4)

Gated Recurrent Unit (GRU): GRU is proposed as an
alternative to LSTM in [19]. It is considered a simplified
version of LSTM where some components within the LSTM
model are deleted. The bottom illustration in Fig. 2 shows the
general structure of a GRU model. In a typical GRU model (as
in [6]) there exists only a reset layer in addition to RNN. The
remember and forget layers of LSTM do not exist in the GRU
architecture. Instead, there exists an update gate vector. Below
equations define the reset gate, candidate activation vector,
update gate vector and output vector.

Zt = U(Wzl‘t +Ufht_1), (5)

he = tanh(Wyay + Up (1 * hy_1)) (6)

Tt :U(Wrﬁﬂtﬁ—Urhtfl), ht = (1_Zt)*h/t71 +Zt*ht (7)
where x; represents the input vector, h; stands for output
vector and h; is for candidate activation vector. z; and r; are
update and reset gate vectors respectively. W and U are the
weight matrices. The * represents Hadamard product.

IV. PROPOSED ARCHITECTURE

Our proposed two-branch GRU-based solution predicts both
RUL and failures simultaneously in an end-to-end fashion. In
our network, we have the first two layers used commonly for
both regression and classification branches. After those two
layers (GRU and drop out layers), our network branches into
two different networks. That is, we have a regression branch
for RUL prediction and a classification branch for failure
detection. In this work, we mainly compare the performance
of three different and recent blocks including RNN, LSTM
and GRU blocks (layers). Therefore, to analyze the affect of
using each of those three types in our experiments, we keep
the model (the connections, the number of branches and the
layer numbers) the same in our base network. The overall
architecture of our network is given in Fig. 3 including all
three of those types. The input for our model is a 2 dimensional
array with size bxd where b is the window width and d is the
sample dimension. The b value (the window size representing
the amount of samples used at each time) is decided after
performing a heuristic search on our dataset where we train
our network at different window sizes (see Table I). In our
approach, we utilize separate loss functions for each branch.

The classification branch starts with a GRU (or an LSTM or
a simple-RNN) layer followed by a dropout layer. Then, those
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Fig. 3: Our proposed two-branch architecture.

two layers repeat themselves again. The last layer of the classi-
fication branch is a dense layer whose activation is set to ‘sig-
moid’. The output of the branch is a one dimensional (scalar)
number, indicating whether there is a failure or not. The
ADAM optimizer is used for the classification branch in all
experiments. Binary Cross Entropy (BCE) is the loss function
that is used to train the classification branch which is calcu-
lated as: BCE = —1 5" w;log(9;) + (1 — y;)log(1 — §;),
where n refers to the total number of samples, y; is the ground
truth for i™ sample and §); is the prediction for ™ sample.

The branch that is used for regression problem differs from
the branch that is used for classification in terms of number of
algorithm layers (i.e. GRU, LSTM or RNN) and the activation
layer. The regression branch starts with a GRU layer followed
by a dropout layer. That dropout layer is connected to a dense
layer which uses linear activation function to yield our final
scalar prediction. The scalar output represents the remaining
useful life of a machine. The RMSPROP optimizer is used
for the regression branch in all experiments. We used Mean
Squared Error (MSE) as the loss function and it is defined
as: MSE = 13" | (y; — ;)% where n refers to number of
samples, y; refers to the ™ ground truth RUL value and §; is
the predicted RUL value.

V. EXPERIMENTS

We design our experiments to analyze the performance of
GRU, LSTM and RNN layers for PdM, respectively, when we
predict both RUL value and failure detection simultaneously.
For that purpose, we utilized the NASA Predictive Mainte-
nance Dataset!. In our experiments, Adam optimization with
learning rate of 0.001 is used in all the classification branches
and RMSprop with learning rate of 0.001 is used in all the
regression branches. Algorithms are trained over 100 epochs
and the best epoch value is reported in our tables. In our
experiments, b is set to 50 and d is set to 25.

1) Dataset: Throughout the experiment the focus is di-
rected to the NASA dataset [16] called FDOO1. The time series
dataset is split into training and test data. The training dataset
contains a total of 20631 instances while the test dataset con-
tains 13096 instances. Each sample includes the cycle index
and 25 different feature data (21 from sensors, 3 from settings
and 1 from cycle number) for 100 different machines along
with their corresponding RUL values. For failure detection,
we create binary classification labels according to the given
ground truth RUL values and obtain the final two dimensional
output labels for each sample normalized between O and 1.

Uhttps://ti.arc.nasa.gov/c/6/

2) Used Metrics: We utilize multiple metrics in our ex-
periments. Accuracy, Precision, Recall, F1, Area-Under-Curve
(AUC) are used to analyze the performance of classification
branch (failure prediction); Mean-Absolute-Error (MAE) and
Coefficient-of-Determination (R2?) are used to measure the
performance of the RUL prediction (regression) branch. Def-
inition of each of those metrics can be found in [20], [21].

3) Window Size Selection: To consider the relation between
the consecutive information in the time series data, we select
a window size that combines all the samples in that window
to form a chunk of samples. We studied the performance of
changing the window size on RUL prediction and reported
the results in Table I in two different metrics (MAE and R? .
While the best results are obtained when the window size is
100, the value 100 is a too big value for the existing dataset
as not all the machines had that long samples. Therefore we
picked the next best and usable value: 50.

Results: Here we first report our experimental results for
simultaneous (joint) training of classification and regression
branches. Then we also report individual training of networks
for only classification and then for only regression branches.

4) Joint Training Results: Table II reports our results of
jointly training both branches for three different configurations
of using LSTM, RNN and GRU layers. In our experiments,
we kept the architecture (the number of layers, the number of
used dropout layers) the same and only used one of the LSTM,
RNN or GRU options to create an LSTM, an RNN and a
GRU based network. Each network simultaneously predicts
both failure likelihood (as the output of the final sigmoid
function of the classification branch) and the RUL value as the
regression output of the regression branch. Table II compares
the performance of each network for both branches (under
regression and classification columns). The best values are
shown in bold. The total number of trainable parameters for
each network is also given in the lost row. The lower number
of trainable parameters is better from the computational aspect.

As the table shows, for both MAE and R? metrics, i.e., for
the regression branch, GRU based network yielded the best
results when compared to both LSTM and RNN networks. For
the classification branch, the results were very similar between
GRU and LSTM networks. However, they both performed
better than RNN based network in all five metrics. From the
computational perspective, the GRU network yielded the least
number of trainable parameters (as shown in the table).

5) Individual Training of Each Branch: In addition to
jointly training regression and classification branches in an end
to end manner, we also trained the networks for each branch

TABLE I: RUL prediction at different window lengths.

1 2 5 10 25 50 100
MAE 56.62 | 2421 | 2382 | 22.11 | 19.25 | 11.41 | 8.19
R? -0.25 0.67 0.68 0.67 0.75 0.86 | 0.90
Number
of machines 100 100 100 100 100 93 70

TABLE II: Comparison of LSTM, RNN and GRU based
network results for joint training of both branches.

Classification Regression
Ace. | Prec. Rec F AUC | Param MAE R Param
GRU 099 1099 1097 [ 098 | 099 [ 66701 | 11.29 0.86 60951
LSTM | 0.99 | 0.98 | 0.98 | 0.98 | 0.99 | 88226 | 12.20 0.80 80651
RNN [ 0.94 ] 0.84 ] 0.88 | 0.86 | 0.92 | 22076 | 39.19 [ —0.09 | 20201




TABLE II: Comparison of the individually trained model
results.

Classification Regression

Ace. | Prec. Rec F1 AUC | Param Time MAE R Param Time
GRU | 0.99 | 0.99 [ 0.98 | 0.99 | 0.98 | 66701 85.21 15.63 0.74 | 60951 81.48
LSTM [ 099 | 0.97 [ 099 [ 0.98 | 098 | 88226 | 92.43 | 15.78 0.75 80651 87.88
RNN 0.96 | 0.96 | 0.85 | 0.90 | 0.97 | 22076 | 698.91 | 45.96 | —0.94 | 20201 | 628.61

individually. First, we experimented on training only the
classification branch for each network on the NASA dataset.
For the classification branch, we utilized all five classification
metrics (Accuracy, Precision, Recall, F;, AUC) to obtain
the results on the test dataset. Those results are summarized
in Table III. As Table III demonstrates, both LSTM and
GRU based networks yielded very similar results. They both
performed significantly better than RNN classification.During
the training, RNN required the least number of trainable
parameters, however, its training time was significantly higher.

Next, we studied the performance of each network for only
the regression task (for RUL prediction). For that purpose, we
trained only the regression branch for each network on the
NASA dataset from the Figure 3. For the regression branch,
we utilized two metrics (MAE, R?) in our experiments on
the test dataset. Those results are summarized in Table III. As
the table demonstrates, GRU and LSTM yielded very similar
results while training of the GRU network was the shortest.
Both GRU and LSTM networks performed significantly better
than the RNN network.

VI. CONCLUSION

Signal and data processing on time sequences in large
industrial sites has gained interest of many researchers recently
due to the rise in the number of installed sensors and due to
the data collection tools used in such industrial sites. With
the recent developments in Al, the interest in processing time
sequences shifted gradually towards the deep learning based
solutions. While LSTM and RNN based solutions have been
used widely to predict RUL or to classify failure individually,
the field of predicting multiple error types and their lengths is a
relatively new field and, therefore, there are not many literature
available simultaneously predicting such multiple outputs in
an end to end way. This work aims to help on that subject by
introducing a GRU based solution to predict both RUL and
failure simultaneously in an end to end manner. We compared
our GRU based network’s performance to its LSTM and RNN
based counterparts and observed that utilizing a GRU based
network has benefits over utilizing an LSTM or a simple-
RNN based network for RUL prediction and failure detection
simultaneously. Those benefits include: (i) lesser training time
which can be useful where re-training is done frequently or
in semi-online training environments, (ii) similar or better
performance for both classification and regression tasks when
compared to LSTM as our results indicate.
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