YOLODrone: Improved YOLO Architecture for
Object Detection in Drone Images

Oyku Sahin
Ozer Lab, Department of Computer Science
Bilkent University

Abstract—Recent advances in robotics and computer vision
fields yield emerging new applications for camera equipped
drones. One such application is aerial-based object detection.
However, despite the recent advances in the relevant literature,
object detection remains as a challenging task in computer
vision. Existing object detection algorithms demonstrate even
lower performance on drone (or aerial) images since the object
detection problem is a more challenging problem in aerial images,
when compared to the detection task in ground-taken images.
There are many reasons for that including: (i) the lack of large
drone datasets with large object variance, (ii) the larger variance
in both scale and orientation in drone images, and (iii) the
difference in shape and texture features between the ground and
the aerial images. In this paper, we introduce an improved YOLO
algorithm: YOLODrone for detecting objects in drone images.
We evaluate our algorithm on VisDrone2019 dataset and report
improved results when compared to YOLOv3 algorithm.

Keywords—Object Detection, UAV image analysis, YOLO

I. INTRODUCTION

Recent developments in aerial robotics introduced a variety
of UAV applications for camera equipped drones as in [1],
[2]. Consequently, the widespread use of the cameras on
UAVs brought the attention to the vision based object detec-
tion algorithms. However, object detection in drone images
remains as a challenging task which is shown to be even
a harder challenge than it is in ground-taken images [2].
Therefore, there have been several public datasets released
and workshops have been organized recently [3], [4], [5], [6],
[7]. Detecting objects in aerial (drone) images is inherently a
harder challenge than detecting objects in ground images and
there are various reasons for that including: (i) objects can
appear almost in any direction, while they mostly appear in a
narrow range of direction in natural images (e.g., pedestrians
or trees are mostly oriented perpendicular to the ground), (ii)
objects appear in a large variety of scales in aerial images
in the view of camera perspective, (iii) objects (depending
on the height and the optical focus of the camera) typically
appear significantly smaller on average in drone images and
(iv) objects have different texture and shape information in
aerial images than they appear in ground images. Figure 1
demonstrates two of such challenges in drone images. While
there have been recent algorithms proposed to yield better
detection accuracy (to see the performance of various detection
algorithms, please refer to [6]), in many drone applications,
the YOLO-based algorithms [8], [9] remain among the most
commonly used detection algorithms and some reasons for
that are: (a) various versions of YOLO implementations with

Sedat Ozer
Ozer Lab, Department of Computer Science
Bilkent University

=, “_ A S\
bl) T s e y A"

Fig. 1. Two different images demonstrating sample challenges in
aerial datasets: different viewing angle and objects appearing in much
smaller size. Images are taken from the VisDrone2019 [6] dataset.

their trained models are publicly available; (b) there are many
online resources explaining the details of the algorithm are
available; and (c) its frame per second (fps) rate is relatively
higher than that of two-stage algorithms. After the original
YOLO [8], there were two other versions also proposed by its
original authors, namely YOLO version2 (YOLOv2) [10] and
the most recent version: YOLO version3 (YOLOV3) [9].

The most common techniques applying YOLO variants
to aerial images mainly include modifications on various
hyper-parameters such as fine-tuning, data augmentation and
computing better hyper-parameters (see [6] for sample YOLO
works). In this paper, we focus on that problem and study
the affect of changing the network architecture of YOLO for
aerial images. We call our new improved YOLO architecture
as YOLODrone. We evaluate YOLODrone’s performance on
a large and public drone dataset and compare that to the
performance of the most recent YOLO algorithm published by
the original YOLO authors (YOLOv3 [9]). In this paper, we
use VisDrone dataset because it is the largest and most recent
aerial dataset including varying sizes of the objects relative to
the image size. It contains many small sized objects along with
their larger sized versions. We report significant improvement
in mAP metric when compared to YOLOvV3 algorithm. In
particular, to detect the smaller objects and to deal with other
issues that exist in aerial domain, we introduce increasing the
total number of used prediction layers in the network. Our
proposed YOLODrone architecture contains 95 convolutional
layers and 5 prediction layers, while the YOLOvV3 algorithm
contains 75 convolutional layers with 3 prediction layers.
We report an improvement of 0.185 in mAP5y value over
YOLOV3 on VisDrone dataset in our experiments.

Our main contributions include: (1) introduction of a new
YOLO architecture: YOLODrone for detecting objects in
drone images, (2) studying the effect of using different data

augmentation techniques, (3) reporting improved results in
mAPsq value for the VisDrone2019 dataset, when compared
to the YOLO algorithm (YOLOV3), (4) studying the perfor-
mance of changing the total number of anchor boxes and the
prediction layers in the YOLO architecture.

II. RELATED WORK

Object detection is an essential task and has been widely
studied in computer vision. Yet, it remains as a challenging
task despite the recent advances using deep learning. While the
earlier solutions used classical techniques with hand crafted
features (such as [11]), the recent focus has been on utilizing
deep learning based techniques due to the significant perfor-
mance gains introduced by the deep learning as in [2], [12],
[13]. The state-of-art object detectors are typically categorized
under two names: two stage methods and one stage methods.
Two stage methods such as R-CNN-based detectors (as in [14],
[15], [16]) provide higher accuracy when compared to single
stage ones. In two stage algorithms, the detection process
contains two main steps: In the first step (stage), the candidate
regions of interests are proposed and then, the following stage
(the second step) is used to prone those detected regions
to obtain the final detections and their bounding boxes. On
the other hand, one stage methods such as CenterNet [17],
SSD [18] and YOLO [8], typically provide higher frame per
second (fps) rates. They are computationally more efficient
since such detectors eliminate the need for using additional
stage(s) (such as the region proposal network which increases
the computational cost). Both single and double stage detectors
are used for object detection in drone images. Examples for
two-stage detectors used on aerial datasets can be found in
(191, [20], [21], [2].

The relevant literature on object detection in drone images
remains limited as it is a relatively a new domain and as
the public datasets were not available until a couple of years
ago. One of the largest drone datasets for object detection is
VisDrone dataset and it has been released first in 2018. [7]
In visDrone challenges, multiple solutions using YOLOv3 [9]
variants can be observed. For example, YOLOv3 and Faster
R-CNN has fused by [7].(A.8 and A.2). As stated in [7].(A.2),
the reason behind that fusion is the dispersion of the dataset.
Since the number of cars in the training data set is quite
large, the detectors perform relatively well on the car class in
the VisDrone dataset. However, some samples for many other
classes are not that many in numbers as in the tri-cycle class.
Thus, mostly, the detectors suffer from the imbalance problem
and they could not perform well on that tri-cycle class. To
solve that issue, the fusion of two detectors were proposed.
Another work improved YOLOV3 by fine tuning in [7].(A.12)
and applied initial data prepossessing to the training set in
[7].(A.26). On the other hand, in visDrone 2019 [6] challenge
only one group proposed a solution based on YOLOvV3 in
which the authors used a combination of YOLOv3-spp and
faster-RCNN [6].(A.17). In [22], a car detection algorithm was
proposed utilizing both YOLOv3 and R-CNN in aerial images.
According to the reported results in that paper, YOLOv3

performed better than R-CNN to detect cars in aerial images.
Another work using YOLOV3 on aerial images is proposed in
[23] which improved YOLOv3 to make multi-scale prediction
at four different scales instead of three. The main reason
for that change is to use more information like contour and
texture to detect smaller objects. Another important part when
it comes to choosing algorithms for object detection on drones
is having algorithms that can detect objects in real time. For
example, in [24] YOLO-LITE is introduced to run in real-time
to eliminate the need for a GPU by increasing the fps rate.

Our work differs from the existing work in the literature
in many ways: (i) we introduce a YOLO architecture that is
still considered as YOLO architecture but does perform better
on aerial images, (ii) we show that including more prediction
layers increases the prediction accuracy on VisDrone dataset,
(iii) we show that re-assigning the anchor box sizes and their
numbers also affect the accuracy.

III. OVERVIEW OF YOLOV3

The original YOLO paper [8] was published in 2016 where
the object detection problem was approached mainly as a
regression problem. A deep network was used to predict the
class score and bounding boxes at the same time on a given
input image. The original YOLO contains 24 convolutional
layers and two fully connected (FC) layers. YOLO version
2 (YOLOv2) [10] was introduced as an improved version
of the original YOLO algorithm. In that version, a fully
convolutional architecture was proposed. Batch normalization
and anchor boxes were also used. YOLOv2 architecture
was trained on a larger number of classes with higher
resolution images. YOLOV3 [9] using DarkNet53 as feature
extractor was first introduced in 2018 as an improved version
over YOLOvV2. Three main improvements introduced: First,
YOLOV3 detects objects at three different scales with the
help of predefined anchor boxes at different scales in three
different layers. Each detection layer is responsible with
a different number of grid cells and each one proposes 3
candidate bounding boxes, as there are 3 anchor boxes used
at each detection layer. Second improvement in YOLOV3 is
a novel loss function. Instead of penalizing the objectness
scores, class and bounding boxes surrounds non-object part
of the image, with respect to squared errors in YOLOV3 they
are penalized by using cross-entropy. The third improvement
is adding the ability of multi-label classification to YOLO
algorithm. The YOLOv3 includes 53 convolutional layers
and the detection algorithm yields higher performance on
the MS COCO data set. Figure 2 (a) summarizes YOLOvV3
architecture where each convolutional block is color coded
(see Table I for further details).

IV. YOLODRONE ARCHITECTURE

The existing state-of-the-art object detectors are designed by
considering and observing the existing problems in the datasets
that are designed for object detection such as ImageNet, Pascal
and COCO datasets. However, each of those three datasets
predominantly contains ground-taken images. Therefore, ob-
ject detectors trained on such datasets containing ground-taken

522 5=2f1 S=2f1 =271 s=2/1
F=32 F=64 F=128 Fa256 Fs512
K=3 K=3 K=3 K=3 K=3

':the residual block with 8 skip connections l: the residual block with 1 skip connection l : convolutional layers

| + the residual Block with 4 skip connections f§ : the residual block with 2 skip connetnnns' : convolutional block with 7 layers I

l : routed to next 4* convolutional layers Q) :summation gate

. :Detection layer

: Up sampling layer ° : Concatenation gate

Fig. 2. (a) shows the original YOLOV3 and (b) shows our YOLODrone architecture. Different colored blocks in the architecture represent
different blocks. The meaning of each color is given below the architectures. Our architecture has total of five output (prediction) layers.

images typically perform poorly on aerial images. That is also
valid for the YOLO algorithm (as our experimental results also
support that. See our experiments section).

A. Number of Detection Layers

One of the main issues where the YOLO algorithm suffers
is dealing with the scale of the objects in aerial images. A
potential reason for that is making predictions only at three
different layers. As the number of prediction layers increases,
the algorithm can adjust its parameters to focus on the range
of scale better with the back-propagation algorithm. With that
idea, we developed YOLODrone architecture which contains
more layers and more detection layers when compared to orig-
inal YOLOV3 architecture (compare YOLOv3’s 3 detection
layers to our YOLODrone’s 5 detection layers). Our YOLO-
Drone’s architecture is given in Figure 2 and further details
are provided in Table II. Similar to the original YOLOV3,
YOLODrone resembles an encoder-decoder architecture where
in the first part of its network, the height and width of the
feature maps shrink, and then in the second half, they increase
again. The shrinking process (reducing the height and width of
the feature maps at each consecutive block) is done through the
stride operation. In the first convolutional layer of each block,
stride is set to 2, and after that first convolutional layer, stride
was set to 1 for each aditional convolutional layer in the same
block. Similarly, to increase the height and width of feature
maps, an upsampling layer is used at the beginning of each

Block SKip | Convolutional | Size | Channel | Channel ‘Number of ‘Activation Name ‘
Connections Layers (Input) | (Output) | Filters Function heightInput -
- 608x608 - - - -

Convolutional Layer - T 33 T 32 32 Leaky Relu
Residual Block T 3 33 32 [32 <1).64 (x2) Leaky Relu
Residual Block 2 5 3x3 64 128 64 (x2) ,128 (x3) Leaky Relu
Residual Block 8 17 3x3 128 256 128 (x8) .256 (x9) Leaky Relu
Residual Block 8 17 3x3 256 512 256 (x8),512 (x9) Leaky Relu
Residual Block 4 9 3x3 512 1024 512(x4).1024(x5) Leaky Relu
Detection Layer - 7 33 1024 512 | 10240:3). 512(3). 51D | Leaky Relu
Detection Layer 7 3x3 512 256 | 512(x3), 256(x3). 51(x1) Leaky Relu
Detection Layer 7 3x3 256 128 256(x3).128 (x3). 51(x1) Leaky Relu

Output - 608608 - B - -

TABLE 1. SHOWS THE DETAILS OF YOLOV3 ARCHITECTURE
ACCORDING TO DIFFERENT BLOCK TYPES AND THEIR ELEMENTS.

block in the second half of the network. In our architecture, we
use 6 different block types where each block is color-coded (as
shown in Figure 2). Each color-coded block contains different
number of convolutional layers and skip connections.

Anchor boxes are used in both YOLOv3 and YOLODrone
and they act as hyperparameters affecting the performance of
the final detection. In our proposed approach, we utilize three
different anchor boxes for each grid cell in each detection
layer. For both algorithms, we find the optimal anchor box
values by applying K-Means algorithm on the given (drone)
dataset. Table III compares our YOLODrone algorithm to
YOLOV3 in various details. We utilize total of 6, 9, 12 anchor
boxes in our experiments.

V. EXPERIMENTAL RESULTS

All the models are trained from scratch with random ini-
tialization over 300 epochs with batchsize = 8 on GeForce
GTX 1080 Ti. The input image size is fixed at 416x416.
As the optimizer, the Adam optimizer was used with 0.001
learning rate. We used mean average precision (mAP) [25] as
our performance metric in our tables: IV,V,VI and in VIL

Block Skip Convolutional Size Channel | Channel Number of Activation
Name C i Layers (Input) | (Output) Filters Function
Tnput - - AT6x416 - - - B
Convolutional Layer - T 3 T g EXET)) Teaky Relu
Residual Block T 3 3x3 32 64 32 (x1).64 (x2) Leaky Relu
Residual Block 2 5 3x3 64 128 64 (x2) ,128 (x3) Leaky Relu
Residual Block 8 17 33 128 256 | 128 (x8) 256 (x9) | Leaky Relu
Residual Block 8 17 33 256 512 | 256 (8).512 (x9) | Leaky Relu
Residual Block 4 9 3x3 512 1024 512(x4),1024(x5) Leaky Relu
Detection Layer - 7 3x3 - - - Leaky Relu
Detection Layer - 7 33 - - - Leaky Relu
Detection Layer - 7 3x3 - - - Leaky Relu
Detection Layer - 7 3x3 - - - Leaky Relu
Detection Layer 7 33 - - - Leaky Relu
Output AT6x416 -
TABLE II. SHOWS THE DETAILS OF YOLODRONE
ARCHITECTURE.
Original YOLOv3 | YOLODrone

Number of Convolutions 75 95

Number of Skip Connections 23 23

Number of Detection Layers 3 5

Number of down sampling 6 8

Number of up sampling 2 4

TABLE III. COMPARISON OF YOLOV3 TO YOLODRONE.

Fig. 3. This figure provides sample results for both YOLOv3 and YOLODrone algorithms on selected two images from the VisDrone dataset.
The first column shows the ground truth, the second column shows the results of YOLOv3 and the third column shows the results of
YOLODrone. The objects labelled with red circle represent the missed or mis-classified objects and the green circles show the successfully
detected objects.

A. The Effect of Data Augmentation

Data augmentation is one of the most common techniques
to improve the performance where the goal is improving the
variance in the training data. In addition to the common
data augmentation techniques such as flip, crop and rotate,
we also utilize another augmentation technique that blackens
certain and vague regions in the datasets. The VisDrone dataset
provides a class called ignored regions and since we do not
want our model to learn from those parts, we blackened those
ignored parts in the images as a part of data augmentation
process. In addition to that operation, The following table
demonstrates the effect of the augmentation technique we
used. As it can be seen in Table IV, although in some classes
the precision decreases, the overall mAP value increases with
this augmentation technique. The total number of images in
the training dataset is 6471 and after the data augmentation
process that number is increased to 19413 images. Test data
includes 1610 images (no augmentation is used on test data).

B. The Effect of Varying the Number of Used Detection Layers

As mentioned, one of the main issues where the YOLOvV3
model suffers is dealing with the scale of the objects in aerial
images. The scales that the objects appear in drone datasets are
smaller than they appear in ground taken images. Therefore,
in YOLODrone architecture, we focused on that scaling issue
of aerial datasets. In our preliminary results, we observed that
YOLOV3 deals with the scales better when compared to the
previous YOLO versions. In a YOLO architecture, the total
number of used grid cells is important in detecting objects

because after the image divided into grid cells, each cell
proposes a candidate anchor box. Therefore, by increasing
the number of detection layers we also increase the number
of candidate anchor boxes scaled in 5 different height width
scale combinations. While experimenting on this idea, we
wanted to compare our results with the actual YOLOv3 model.
Therefore, we trained the original YOLOv3 on visDrone
dataset with random initialization. Then, we modified the
algorithm to have first 4 detection layers and then 5 detection
layers (YOLODrone). We used K-means algorithm to find
data-specific height-width anchor box pairs. Table V compares
those results on each class of VisDrone2019 dataset for the
network with 3, 4 and 5 detection layers, respectively.

Table V shows our experiments on using different num-
bers of detection layers. According to the table, mAP value
increased the most on average with 5 detection layers.

C. Number of Anchor Boxes

The anchor boxes are used to better fit a candidate bounding
box to the ground truth in YOLOV3 and similarly in YOLO-

Detection Layers | Pedestrian | Person | Bicycle | Car | Van | Truck | Tricycle | Awn | Bus | Motor | mAP |

3 [0198 | 0216 | 0.i02 | 0359 [0.263 | 0.17 | 0.102 | 0.116 | 0.468 | 0.199 | 0.299 |
[0202 | 0071 | 0.433 | 0229 [0.126 | 0093 | 0117 | 0.447 [0229 | 0376 |
[0.199 | 0.114 | 0415 | 0229 | 0131 | 0082 | 0.1T | 0.406 [0216 | 0.91 |

[
[
I 7 0237
[5 0251

TABLE V. COMPARES THE RESULTS FOR USING 3 DETECTION
LAYERS, 4 DETECTION LAYERS AND 5 DETECTION LAYERS ON
VISDRONE2019 DATASET.

Pedestrian [Person Tricycle Awn Bus Motor [mAP

0.216 0.195 0.046 0.444 [0.185 | 0.095 0.040 0.079 | 0321 [0.196 [0.216
9 0.19 0.2T6 0.102 [0.359 | 0.263 | 0.170 0.102 0.116_| 0.46 0.199 [0.299
12 0.219 0.468 | 0.0771 [0437 | 0.219 [0.157 0.081 0.0886 | 0.479 | 0.186 [0.363

TABLE VI. SHOWS RESULTS FOR DIFFERENT NUMBERS OF
ANCHOR BOXES FOR YOLOV3 ALGORITHM.

Anchor Boxes Bicycle | Car | Van [Truck
6

[fon | Pedestrian | Person | Bicycle | Car | Van | Truck [Tricycle | Awn | Bus | Motor | mAP |

[Architecture | Pedestrian | Person [Bicycle | Car | Van | Truck [Tricycle | Awn [Bus | Motor | AP [mAPx |
03 0198 | 0216 | 0102 | 0.35 0.102 [0.116 | 0.406 | 0.19 | 0.283

[No [0051 | 0.199 | 0,04 [0215 [0.209 | 0.131 | 00817 | 0.110 | 0406 | 0.116 | 0.I8T |
[Yes [0.198 | 0216 | 0212 | 0359 [0.263 | 0.17 | 0.102 | 0.116 | 0.468 | 0.199 | 0.299 |

TABLE 1V. SHOWS THE RESULTS OF YOLODRONE ON
VISDRONE2019 DATASET WITH AND WITHOUT THE DATA
AUGMENTATION.

9 | 0263 | 0.170 0299
YOLODrone (ours) 0.163 Al - X

TABLE VIIL COMPARISON OF YOLOV3 TO YOLODRONE ON
THE VISDRONE2019 DATASET (MAP VALUES ARE SHOWN FOR
EACH CLASS).

56 | 0.167 Al .16 E 0.191

Drone, we use k-means clustering to find the initial the anchor
box sizes. By changing the total number of used anchor boxes,
we change the total number of candidate bounding boxes in the
architecture. The anchor boxes are scaled at each layer individ-
ually. Since the detection layers are responsible for proposing
the candidate bounding boxes, when the grid size is changed,
the anchor boxes should also be adjusted accordingly. Table
VI shows the experimental results demonstrating the effect of
utilizing different numbers of anchor boxes in YOLOV3.
Table VII shows the best results (in mAP) of both algorithms
(YOLOv3 and YOLODrone) for each class individually. In the
table, we used 9 anchor boxes in the original YOLOV3 (as it
was the originally proposed number) and we used 12 anchor
boxes in our YOLODrone. On top of YOLOv3, YOLODrone
is trained over 300 epochs. In both mAP and mA Py values,
YOLODrone yielded higher performance than YOLOv3 and
out of the listed 10 classes in the table, YOLODrone yielded
the best results for 7 classes. Figure 3 shows qualitative results
obtained by both YOLOvV3 and YOLODrone algorithms.

VI. CONCLUSION

Detecting objects in aerial images remains as a harder
challenge when compared to the object detection problem in
ground-taken images. In this paper, to deal with that problem,
we studied various aspects of the common YOLO architecture
(YOLOV3) and introduced a new YOLO architecture, which
we call YOLODrone, that is crafted to detect objects par-
ticularly in drone images. Our algorithm YOLODrone have
increased number of detection layers (including 5 detection
layers) when compared to the original YOLOv3 algorithm.
While different versions of YOLO (such as YOLOv4 [26]
and YOLOVS [27])) have also been proposed recently, at the
time when this work was completed, YOLOv3 was the most
recent version and consequently, YOLOv4 and YOLOVS were
not included in this paper. Using more detection layers and a
deeper network helps our algorithm to assign different layers
to different scales for object detection. Also, since we are
dividing the image to predict the bounding boxes to more grids
with 5 detection layers, we also let the model learn smaller
objects more accurately as that can also be seen in Figure 3.
Our experimental results show that, our proposed YOLODrone
performed better than YOLOV3 algorithm on VisDrone dataset
on average in terms of the mAPsy value.

ACKNOWLEDGMENT

This paper has been produced benefiting from the 2232 Interna-
tional Fellowship for Outstanding Researchers Program of TUBITAK
(Project No:118C356). However, the entire responsibility of the paper
belongs to the owner of the paper. The financial support received
from TUBITAK does not mean that the content of the publication is
approved in a scientific sense by TUBITAK.

REFERENCES

[1] D. Gozen and S. Ozer, “Visual Object Tracking in Drone Images with
Deep Reinforcement Learning,” in International Conference on Pattern
Recognition (ICPR2020), 2020.

[2] B. M. Albaba and S. Ozer, “Synet: An ensemble network for object
detection in vav images,” in IEEE, 25th International Conference on
Pattern Recognition (ICPR2020), ITALY, 10 - 15 January 2021.

(4]
[5]

(6]

(71

(81

(9]
[10]
(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]
[27]

G.-S. Xia, X. Bai, J. Ding, Z. Zhu, S. Belongie, J. Luo, M. Datcu,
M. Pelillo, and L. Zhang, “Dota: A large-scale dataset for object
detection in aerial images,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2018.

J. Leskovec and A. Krevl, “Snap datasets: Stanford large network dataset
collection,” 2014.

D. Lam, R. Kuzma, K. McGee, S. Dooley, M. Laielli, M. Klaric,
Y. Bulatov, and B. McCord, “xview: Objects in context in overhead
imagery,” arXiv preprint arXiv:1802.07856, 2018.

D. Du, P. Zhu, L. Wen, X. Bian, H. Ling, Q. Hu, T. Peng, J. Zheng,
X. Wang, Y. Zhang, L. Bo, H. Shi, R. Zhu, A. Kumar, A. Li, A. Zinol-
layev, A. Askergaliyev, A. Schumann, B. Mao, and Z. Liu, “The vision
meets drone object detection in image challenge results,” 2019.

P. Zhu, L. Wen, D. Du, X. Bian, H. Ling, Q. Hu, Q. Nie, H. Cheng,
C. Liu, X. Liu et al., “Visdrone-det2018: The vision meets drone object
detection in image challenge results,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 0-0.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in IEEE conference on com-
puter vision and pattern recognition, 2016, pp. 779-788.

J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,”
arXiv preprint arXiv:1804.02767, 2018.

J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in
Computer vision and pattern recognition, 2017, pp. 7263-7271.

P. Felzenszwalb, D. McAllester, and D. Ramanan, “A discriminatively
trained, multiscale, deformable part model,” in 2008 IEEE conference
on computer vision and pattern recognition. 1EEE, 2008, pp. 1-8.

S. Xu, A. Savvaris, S. He, H. Shin, and A. Tsourdos, “Real-time imple-
mentation of yolo+jpda for small scale uav multiple object tracking,” in
2018 International Conference on Unmanned Aircraft Systems (ICUAS),
2018, pp. 1336-1341.

R. Valiente, M. Zaman, S. Ozer, and Y. P. Fallah, “Controlling steering
angle for cooperative self-driving vehicles utilizing CNN and LSTM-
based deep networks,” in 2019 IEEE Intelligent Vehicles Symposium
(1v). 1EEE, 2019, pp. 2423-2428.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580-587.

R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440-1448.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, 2015, pp. 91-99.

K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, “Centernet:
Keypoint triplets for object detection,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 6569-6578.
W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on
computer vision. Springer, 2016, pp. 21-37.

J. C. van Gemert, C. R. Verschoor, P. Mettes, K. Epema, L. P. Koh,
and S. Wich, “Nature conservation drones for automatic localization
and counting of animals,” in European Conference on Computer Vision.
Springer, 2014, pp. 255-270.

P. C. Gray, A. B. Fleishman, D. J. Klein, M. W. McKown, V. S. Bézy,
K. J. Lohmann, and D. W. Johnston, “A convolutional neural network
for detecting sea turtles in drone imagery,” Methods in Ecology and
Evolution, vol. 10, no. 3, pp. 345-355, 2019.

H. Zhu, X. Chen, W. Dai, K. Fu, Q. Ye, and J. Jiao, “Orientation
robust object detection in aerial images using deep convolutional neural
network,” in 2015 IEEE International Conference on Image Processing
(ICIP). 1IEEE, 2015, pp. 3735-3739.

B. Benjdira, T. Khursheed, A. Koubaa, A. Ammar, and K. Ouni, “Car
detection using unmanned aerial vehicles: Comparison between faster
r-cnn and yolov3,” in 2019 st International Conference on Unmanned
Vehicle Systems-Oman (UVS). 1EEE, 2019, pp. 1-6.

Y. Hu, X. Wu, G. Zheng, and X. Liu, “Object detection of uav for anti-
uav based on improved yolo v3,” in 2019 Chinese Control Conference
(CCC). IEEE, 2019, pp. 8386-8390.

R. Huang, J. Pedoeem, and C. Chen, “Yolo-lite: A real-time object
detection algorithm optimized for non-gpu computers,” in 20/8 IEEE
International Conference on Big Data (Big Data), 2018, pp. 2503-2510.
R. Padilla, W. L. Passos, T. L. Dias, S. L. Netto, and E. A. da Silva,
“A comparative analysis of object detection metrics with a companion
open-source toolkit,” Electronics, vol. 10, no. 3, p. 279, 2021.

A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal
speed and accuracy of object detection,” 2020.

G. Jocher, “Yolov5s,” in https://github.com/ultralytics/yolov5, 2020.

