
Activity Detection in Scientific Visualization
Sedat Ozer, Deborah Silver, Karen Bemis, and Pino Martin

Abstract—For large-scale simulations, the data sets are so massive that it is sometimes not feasible to view the data with basic

visualization methods, let alone explore all time steps in detail. Automated tools are necessary for knowledge discovery, i.e., to help sift

through the data and isolate specific time steps that can then be further explored. Scientists study patterns and interactions and want to

know when and where interesting things happen. Activity detection, the detection of specific interactions of objects which span a limited

duration of time, has been an active research area in the computer vision community. In this paper, we introduce activity detection to

scientific simulations and show how it can be utilized in scientific visualization. We show how activity detection allows a scientist to

model an activity and can then validate their hypothesis on the underlying processes. Three case studies are presented.

Index Terms—Activity modeling, activity detection, activity recognition, simultaneous event detection, Petri Nets, feature tracking,

group tracking, time-varying scientific data analysis and visualization

Ç

1 INTRODUCTION

TODAY’S state-of-the-art simulations generate high-resolu-
tion data at an ever increasing rate. Such simulations

produce data with billions of mesh points (or voxels) for each
time step and thousands of such time steps with multiple
variables. Time-varying data can easily reach peta- and exa-
byte scale. Visualizing these massive data sets is still an
ongoing problem. Even after visualizing this data, viewing
each variable at each time step is practically impossible in
thousands of time steps. Simulations become too complex
for the scientist to analyze manually. In such time-varying
data sets, scientists want to know “where and when events
happen” or “how long an event lasts.” Finding these events
in thousands of time steps is not possible with standard
visualization tools. What scientists need are routines,
procedures, and visualizing techniques to help filter massive
data and help focus on areas and events of interest.

In many simulations, a scientist has a hypothesis about
events occurring in the data and would like to test and
refine his/her assumptions in the hypothesis. Allowing a
scientist to model an event and then search for that event
over thousands of time steps would both filter massive data
and enable scientists to focus on regions of interests in both
space and time.

Detection of events has been an active research area in
video analysis and there have been a large number of
techniques and tools proposed (see Section 2). However,
currently there is no tool available for scientists to define,
model and automatically search for complex events, i.e.,

activities, in their time-varying 3D scientific data. Most
feature-based visualization and analysis routines are still
focused on a single time step. Available visualization routines
for feature-based time-varying data are mostly concerned
with the correspondence problem that involves correlating
objects from one time step to the next. These routines do
not provide the scientist the ability to model complex
spatiotemporal patterns or to answer the fundamental issue
of where, when, and how “interesting things” occur.

Fundamentally, activity detection is an automated search
process of finding a specific and complex pattern (activity)
in a large data set containing many different types of
patterns. Activity examples include formation of features
(such as galaxies, halos, storms or blood clots), anomalous
interaction or behavior (anomaly detection), Merge-Split,
and ignition events. These patterns are distributed over a
large number of time steps. Different instances of the
pattern can happen in different durations, i.e., one instance
of an event may take 20 time steps and another instance of
the same event could take 4.

The problems facing any attempt to localize complex
events (activities) automatically in time-varying 3D scien-
tific data can be summarized as how to

1. provide an appropriate way for users to define an
event of interest;

2. find an appropriate formalism to model this event;
3. apply the model to detect many instances of the

event of interest in simulation data; and
4. present the detected events to users in an appro-

priate visual form.

In this paper, we introduce activity detection and discuss
its applicability for both data analysis and visualization
purposes of scientific data with observable features or
events. Our main goal is to develop a framework that a
scientist can use to first model a spatiotemporal pattern and
then search through massive data sets to find instances of
such a pattern. The natural way of modeling events or
activities is using a graphical and state-based approach that
can convert or translate the semantics of an event into a
graph-based model. Therefore, in this paper, we propose

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 3, MARCH 2014 377

. S. Ozer and D. Silver are with the Vizlab, Department of Electrical &
Computer Engineering, Rutgers University, Piscataway, NJ 08854.
E-mail: {sedat, silver}@rutgers.edu.

. K. Bemis is with the Department of Marine & Coastal Sciences, Rutgers
University, Piscataway, NJ 08901. E-mail: Bemis@rci.rutgers.edu.

. P. Martin is with the Crocco Lab, Department of Aerospace Engineering,
University of Maryland, College Park, MD 20742.
E-mail: mpmartin@umd.edu.

Manuscript received 2 Jan. 2013; revised 20 May 2013; accepted 4 Aug. 2013;
published online 19 Aug. 2013.
Recommended for acceptance by R. Machiraju.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-2013-01-0001.
Digital Object Identifier no. 10.1109/TVCG.2013.117.

1077-2626/14/$31.00 � 2014 IEEE Published by the IEEE Computer Society

using Petri Nets (PNs) for modeling and searching for
events in scientific simulations. An overview of the
proposed framework is shown in Fig. 1. First, a scientist
defines and models the pattern using a Petri Net and then
the instances of this pattern are isolated automatically in the
time-varying data set. The result is a list of participating
features and specific time intervals, where that specific
pattern occurs.

Our contributions in this paper include introduction of
the concept of activity detection for scientific visualization,
the use of Petri Nets to model and detect activities in
scientific visualization, an enhancement of Petri Nets to
include the dynamics of scientific phenomena, and demon-
stration of the use of activity detection on three different 3D
time-varying data sets as case studies.

1.1 Definitions and Use-Case Scenarios in
Scientific Data

An event is a spatial and temporal (spatiotemporal) pattern
that happens over a course of time steps and can include the
interactions of different types of objects. Events can be
further divided into two groups: atomic events (actions) and
complex events (activities).

An atomic event or action is a primitive event that is
easier to define and detect and can be inferred by
comparing the current time step to a specific (reference)
time step. Actions usually occur between two consecutive
time steps, such as merge, split, birth, and death [1]. A
complex event or an activity is an event that spans multiple
time steps and includes multiple object types, object states
or object interactions. Complex events usually occur over
more than two time steps. An actor is an object that
participates or is involved in an activity. In this work, we
will use the terms actor, object or feature interchangeably to
refer to a region of interest that performs the activity or is
participating in the activity. We will use the terms metadata
or attributes to describe a set of computed quantitative
properties of objects.

Activities are common interests in video analysis as in
[2], [3], [4], [5], and [6]. For example consider a security
surveillance system at an airport. There are hundreds of

locations and thousands of hours of video that must be
monitored. One situation of interest to security personal is a
“left-baggage” activity where a person walks in with a bag,
puts the bag down and then walks away without the bag. A
model of this activity is shown in Fig. 2. Searching for that
sequence in hours of video footage (and real time) is a
crucial task.

Fig. 2 illustrates the activity “a walking person leaves a
bag unattended” as a sequence of key and atomic
(primitive) events without considering all the possible
configurations. Similar to Fig. 2, there are many cases
where the scientists are looking for complex events of
features. Examples are: formation of a packet [7], formation
of a galaxy as in [8], and combustion events as in [9]. Three
specific examples we use in this paper include “Anom-
alous Plume Bending,” “Packet formation,” and “Merge-
Split.” In oceanography, scientists are interested when an
anomaly occurs, i.e., unusual changes in direction or
magnitude of the bending of the plumes in response to
local ocean currents (Anomalous Plume Bending). As
another example [7], in wall-bounded turbulent direct
numerical simulations (DNS) there are hundreds of hairpin
vortices (features) interacting with each other in each time
step. One event scientists are interested in is finding when
packets form, i.e., “Packet Formation” and its duration. (A
packet is a group of features acting coherently). This event
involves numerous “young” hairpin vortices that come
together and eventually form a group (packet). The third
example is the “Merge-Split” activity in which first
multiple features merge to form a single feature, and then
this single feature splits into multiple features again within
a specified time interval. Similar events have been
described in [34] and [47] previously.

378 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 3, MARCH 2014

Fig. 1. An activity detection framework with Petri Nets: The data come into the framework on the left. The activity or event of interest is defined by the
scientist and it is the event that the scientist is interested in searching for within the data set. The way the scientist describes the event is through the
use of a Petri Net. The next step is processing the data. In this step features, variable changes, and so on, are computed and stored as metadata.
This step also involves correlating features/variables and their changes over time. Once this information is computed it can be searched using the
Petri Nets to find an activity of interest. The output of the Petri Net is a list of time steps where the event occurs and a list of features that participate in
the activity.

Fig. 2. A simple sequence of an activity (left-baggage) formed of three

different key atomic events (actions) over the course of 42 time steps.

Many other domains have the need for detection of
activities such as blood clot formation in blood flow
simulations [10], magnetic storm formations in space-weath-
er simulations [11], and extinction and reignition in turbulent
flames in combustion simulations [12]. All these examples
involve actors performing activities and all these activities can
be modeled by using a common formalism. Activities occur
over multiple time steps in which feature attributes or feature
types may change over a course of an experiment/simula-
tion. The duration of the occurrence of an activity usually
changes from one instance of the activity to the next. For
example, one such occurrence could happen over 10 time
steps and another could take 100 time steps. The ability to
model an activity considering such variance in durations is
necessary prior to detecting the activity. The natural and best
way of describing such activities is via the key feature states
and key atomic (primitive) events (i.e., actions) that char-
acterize the complete activity. Once the key actions and
feature states are determined, we can express such complex
events as a sequence (or a combination) of these feature states
and actions. In such a sequence model, the detection starts as
soon as the first primitive event of the sequence occurs and
completes with the occurrence of the final primitive event.
In a graph-based technique, each node represents one of these
key atomic events or feature states. A Petri Net is such a
graphical technique that uses nodes as feature states or their
primitive events (See Section 3).

Table 1 categorizes some of the available domain
specific terms based on objects (actors, features), and their
interactions/atomic events for general computational fluid
dynamics (CFD) simulations. These are the events that can
describe the actions or the entire activity depending on the
complexity of the interaction in CFD domain and these are
the types of events that can be modeled for activity
detection. Each of these listed items can represent a node
in a Petri Net model of an activity.

Similar to Table 1, a library formed of common atomic
event definitions and feature types can be created and then
can be used to describe more complicated activities for
scientific simulations. Such a library would also help
scientist to describe how to express their domain specific
actions and features. Moreover, meaningful combinations
of such object and interaction types could yield exploratory
knowledge discovery.

Activity detection can be utilized in many other different
ways in scientific visualization. Example applications are

model or hypothesis validation in simulations, time-varying
data analysis, and time-varying transfer function generation.

We present the related activity detection work in the next
section. In Section 3, first we discuss Petri Nets and the
enhancements needed to operate within a scientific envir-
onment. We then describe the implementation and how
visualization can be enhanced with this approach. In
Section 4, three case studies are given to demonstrate how
Petri Nets can be used to identify events within time-
varying data and we conclude this paper in Section 5.

2 RELATED WORK

Detection of activities is a fundamental and important step
of fully automated intelligent systems and applies to many
fields where the data come from various types of sensors
including cameras, medical devices, and sensor networks as
in [13], [14]. It has been an active research area under the
“activity detection” name, although the terms “activity
recognition,” “action detection,” and “action recognition”
have also been used interchangeably, (see the survey [15]).

Activity detection is related to data mining. Data mining
is the process of finding new and nontrivial information
within a data set. This information can be in the form of a
pattern, a model of the process that generated the data set
or the correlation information between the available
variables. Activity detection specifically deals with the
complex patterns that are in the form of sequences (or
combinations) of simpler patterns. A successful data mining
technique requires domain knowledge [16]. This is also true
for a generic activity detection framework. Inputs and
outputs of a generic activity detection framework are shown
in Fig. 3.

While supervised and unsupervised techniques can also
be used for activity detection, they do not provide an
intuitive and easy way to express a hypothesis. Our focus in
this paper is presenting a technique that allows a scientist to
specify an event and search for it. Therefore, in this paper,
we propose to use Petri Nets to express and model an
activity. A Petri Net model is a graph abstracting an
activity. Therefore, the same Petri Net model (graph) can be
used in different simulations with different parameters.
Compared to the learning-based data mining techniques,
their performance depends on the model description as
opposed to forming new training data. Choosing between
learning-based algorithm and graph-based algorithm bal-
ances a tradeoff between needing additional data for
training and needing to specify an accurate description.
A graph-based approach is more likely to meet our
objective of enabling hypothesis testing.

OZER ET AL.: ACTIVITY DETECTION IN SCIENTIFIC VISUALIZATION 379

TABLE 1
Ontology of Coherent Structures and Their Evolution

Fig. 3. Inputs and outputs of a typical activity detection framework, the

definition of the activity comes from the domain knowledge.

As a framework, activity detection involves numerous
steps including segmentation, tracking, and computing the
feature attributes. Therefore, in this section, first we review
activity detection in computer vision and then we give a list
of the available segmentation and tracking techniques in
scientific visualization.

2.1 Activity Detection in Computer Vision

In computer vision, the activity detection problem is treated
with different approaches including clustering, machine
learning or semantic-based techniques using rules or graphs
such as Petri Nets. All of these approaches require the
domain knowledge in different forms. For example, in the
case of machine learning, the domain knowledge is
embedded within the training data. The learning process
and the accuracy of the technique depend on the validation.
Validation requires ground truth, which is a set of expected
or real outputs (labels) from the technique. Picking (or
generating) the ground truth or the training data is
equivalent to manually picking and labeling multiple
instances of the activity within the data set. This is almost
the same as exploring the data manually in each time step
and, therefore, is an extremely time consuming task [17].

Semantic-based activity detection approaches simply
generate a model of the given activity from its description.
These approaches do not require training data or a certain
type of cost or similarity function to be derived. Instead, the
domain expert defines the activity in a sequential form in a
timely manner and this description is used to search for the
event. The sequential form can be in the form of a set of rules
(as in [18]) or a graph (as in [19], [20], [21], [22]). Both rule-
based and graph-based techniques are fundamentally logic-
based (if-then based) techniques. Among those, the graph-
based techniques use a state-based approach in which the
various stages of an activity are described as the individual
nodes (e.g., finite-state machines, Petri Nets). Petri Nets
encompasses both rule-based techniques and finite-state
machines (a finite-state machine is a subclass of Petri Nets,
see Section 3). Using the Petri Net formalism, a scientist
models an activity in a graphical fashion where objects in the
simulation pass through different stages on the way to being
classified as an activity. Once the graphical model is
available, a Petri Net algorithm evaluates the model to
search for the instances of the activity automatically. (This is
analogous to knowledge-assisted visualization [25].)

In computer vision, activity detection applications
mainly focused on human-related activities. These include
interactions or relations between: humans and humans [26],
humans and vehicles [27], humans and websites [28] or
certain human behaviors or their situations in certain
environments as in [13]. Various techniques including
Bayesian techniques, hidden Markov models, and condi-
tional random fields are used to “learn” and detect activities
in such examples. A detailed list of available activity
examples and detection techniques can be found in the
review papers [3], [15], [29], and [30]. Recently, Petri Nets
gained the attention of researchers in both data mining and
activity detection communities as in [2], [5], [19], [20], [21],
and [22]. This is due to the fact that Petri Nets can be used
as a natural way of modeling semantic descriptions of
activities or events.

While all the activity detection related Petri Nets works
aimed to work with video data, they do not incorporate the
“dynamic” properties of the time-varying environment
(e.g., split, merge, appear, and disappear events) within the
Petri Net formalism. Some of the above-mentioned treat-
ments such as timed Petri Nets or Stochastic Petri Nets still
lack supporting the dynamics of a “time-varying” system.

2.2 Related Work in Visualization

Event visualization in video data has been studied in the
visualization community. For example, Botchen et al. [4]
presented a video visualization technique, VideoPerpetuo-
Gram, for action visualization in video data. In their method,
they treated the stacks of 2D time-varying video data as 3D
volume data and visualized actions in such volume data.
Parry et al. [6] presented a hierarchical event selection
algorithm for event visualization in video data and applied
their method on snooker video. A list of available applica-
tions and techniques can be found in the survey paper [31].
Woodring and Shen have used a combination of wavelet
transforms and clustering to detect and visualize the
temporal trends in time-varying data sets in [32]. Dou
et al. [33] detected and visualized interesting events (trends)
in text data. However, none of these papers allows scientist
to model a specific scientific activity.

Related work in feature-based visualization includes
extraction and tracking. Extracting atomic events and
features from time-varying data has been widely studied
in scientific visualization. This information is crucial to
activity detection and provides the metadata input to an
activity detection framework. Feature extraction extracts the
objects (actors) within the time-varying data set for activity
detection. In different domains, appropriate extraction tools
can be used to define and extract features as in [1], [9], [34],
[35], [36], [37]. Various feature tracking models have been
proposed to track features and to visualize their evolution
over time as in [1], [9], [38], [39], [40], [41], [42], [43]. Besides
extracting features and tracking them, recently, Ozer et al.
[44] proposed a group tracking model that also extracts the
groups of features in the data and then tracks them over
time. In their paper, a list of useful attributes is also
provided. Such a list of attributes can be used to define a
feature’s state or an action.

In general, the activity detection framework that we
propose in this paper can use all of the available
segmentation and tracking techniques in scientific visuali-
zation. In the next section, we discuss Petri Nets and the
enhancements needed to operate them within scientific
environment.

3 PETRI NETS

In this paper, we introduce using PNs for detecting
activities in 3D scientific data sets and we further enhance
them for feature-based scientific data processing and
visualization. Petri Nets are graph-based techniques that
can model and visualize various behavior types including
parallelism, concurrency, resource sharing, and synchroni-
zation [23]. A Petri Net is a finite-state machine that allows
multiple inputs and multiple outputs (A traditional finite-
state machine is a Petri Net in which each transition is

380 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 3, MARCH 2014

restricted to have exactly one output and one input [24]).
The more general property of allowing multiple inputs and
outputs makes Petri Nets an ideal candidate for activity and
hypothesis modeling in scientific simulations.

In this section, we assume that all the features have
already been segmented, tracked, and their attributes are
available. Then, we can say that activity detection with Petri
Nets has two fundamental steps: 1) model the activity of
interest (i.e., modeling); and 2) create a data structure for
the modeled Petri Net and run the algorithm over the time-
varying data (i.e., execution). This is analogous to first
training a machine learning algorithm and then running
such algorithm with the learned parameters on the test (or
new) data. The activity is modeled by the scientist for
activity detection with Petri Nets.

A typical Petri Net model consists of places, transitions,
and directed arcs. Places (circles in a Petri Net graph)
represent the types of possible object states in the domain.
Transitions (rectangles in a Petri Net graph) sit between
places and represent conditions or actions. Directed arcs
(the edges) define the connections between places and
transitions in a Petri Net model.

Execution of a Petri Net is done by means of tokens (solid
dots in a Petri Net graph). A token can represent an instance
of an individual feature or an instance of a set of features.
Token examples include “a vortex,” “a hairpin,” “a bent
plume,” “a big eddy” or “a set of features” (such as a packet
as in [44]). Various examples of tokens, places, and
transitions can be found in Table 2. The location of a token
describes the current status of an activity in a given Petri
Net model. This can be imagined as tokens flowing from
one place to the next and the transitions act like the gates
controlling this flow by being open or closed.

Fig. 4 shows an example Petri Net model of the “left-
baggage” scenario. The complete activity is decomposed
into key actor states (Person, Person with bag, Person without a
bag) and actions (carries a bag, walks, leaves the bag, picks up
the bag, person disappears). Then, the activity is modeled
graphically as a sequence of these actor states and actions. A
token in this Petri Net represents a person from a video
surveillance data and the token’s location shows the current
status of the person in the Petri Net.

A typical PN is the tuple PN ¼ ðP;T; I;O;CP;CT;
S;E;MÞ:P is a set of places such that P ¼ fP1; P2; P3; . . . ;
Png;CP ¼ fCP1; CP2; CP3; . . . ; CPng a set of place conditions,

where CPn is the place condition for the place Pn, CP ¼
fCP1; CP2; CP3; . . . ; CPng a set of place conditions, where
CPn is the place condition for the place Pn;T ¼ fT1; T2;

T3; . . . ; Tmg a set of transitions, CT ¼ fCT1; CT2; CT3; . . . ;
CTmg a set of transition conditions, where CTm is the
transition condition for the transition Tm.

In Petri Nets, a place can only connect to transitions and
transitions can only connect to places through directed arcs
(see Fig. 4). Directed arcs are further categorized into two
subcategories namely incoming arcs and outgoing arcs. The
set I defines the set of incoming arcs and the set O defines
the set of outgoing arcs. An incoming arc describes the
connection from a place to a transition and an outgoing arc
describes the connection from a transition to a place. The
set of all the incoming arcs is usually defined in a matrix
form such that Iðj; iÞ ¼ w is the arc weight from jth place to
the ith transition. Similarly, the set of all the outgoing arcs
is usually defined in a matrix form such that Oðj; iÞ ¼ w is
the arc weight from ith transition to the jth place. When the
arc weight (w) is not specified, it is assumed to be one.
The state of a Petri Net is defined by the marking M ¼ f�1;
�2; �3; . . . ; �ng, where �n is the number of tokens in place
Pn. A Petri Net is executed based on the number of tokens
in each place and the object attributes with the firing rule
[23], [24]. Therefore, tokens determine the state of a Petri
Net. S ¼ fS1; S2; S3; . . . ; Srg is the set of initial (starting)
places where the activity starts (r < n) and E is the set of
final places where the activity ends.

A transition Ti is enabled if and only if there are enough
tokens in each input places, i.e., 8j : MðjÞ � Iðj; iÞ and if the
CTi is satisfied. Firing an enabled transition is the process of
moving the tokens from the incoming places to the outgoing
places. Firing a transition Ti consumes (removes) Iði; jÞ
tokens from each of its input place i, and produces Oðj; iÞ
tokens in each of its output places j. Thus, the new
markings can be computed with the following equation:

Mk ¼Mk�1 þ ðO� IÞEk; ð1Þ

where Ek is the vector representing the transitions that
are fired at time step k [21]. EðiÞ ¼ 1 if Ti is fired and 0
otherwise, where i ¼ 1; 2; . . . ;m. See [45] for more details.

In computer vision, actor states and actions are identified
by using several low-level detection, segmentation, and
classification techniques. In scientific visualization, feature
or group extraction extracts actors and computes various
attributes for each extracted actor in the data, and feature
(or group) tracking correlates the actors in time. Attributes
are used to define places (actor states). Both attributes and

OZER ET AL.: ACTIVITY DETECTION IN SCIENTIFIC VISUALIZATION 381

TABLE 2
Examples of Token, Place, and Transition

in Scientific Simulations

Fig. 4. A Petri net model for the left-baggage example.

tracking information are used to define transitions (actions)
in a Petri Net.

3.1 Token-Tracking Petri Nets (TTPN)

In many scientific simulations, there are multiple features
and these features interact with each other. The total
number of features changes in each time step because of
the merge, split, continuation, birth and death events [1].
Petri Nets can be used to model “simple” merge and split
events, where the number of merging (or splitting) features
is fixed or known in advance. However, this is not the case
in scientific simulations because the number of merging
(or splitting) features change from one instance to the next
and this information becomes available during the runtime
(this is illustrated in Figs. 5a and 5b). Therefore, modeling
such variability through the arc functions of the typical
Petri Nets (including colored Petri Nets) is difficult. In
addition, the time variance in Petri Nets has been limited to
expressing the duration-based conditions (mostly for
transitions) in timed Petri Nets and probabilistic Petri Nets
[23], [24]. There is no Petri Net formalism proposed in
activity recognition applications to update a token or the
state of a Petri Net as a function of time.

We summarize the existing problems in Petri Net
applications to model activities in scientific simulations as
follows: 1) tokens (i.e., object attributes) change from time to
time and existing Petri Net applications do not consider
such time variance in a place; 2) the number of merging and
splitting features varies from one instance to another and

this number is computed during runtime. Therefore, it is
difficult for the scientist to include such variability in a Petri
Net model in advance; 3) tokens disappear or change their
state from one time step to the next and such variability
should also be considered in the Petri Net formalism even if
these situations are not explicitly modeled in a given Petri
Net model.

In this work, we enhance Petri Nets to handle above-
mentioned issues existing in the previous activity detection
works and call our enhanced Petri Net token-tracking Petri
Nets. TTPN consider the feature dynamics by updating the
tokens and their places automatically as the time changes.
This is done by coupling the Petri Net with the tracking
information. Therefore, the state of a TTPN is a function of
time and is described by the tuple (Mþ

kk�1; F), where Mþ
kk�1 is

the final marking (see the next paragraph) obtained in the
previous time step tk�1 and F is the updating function.
The updating function F maps the existing tokens in a Petri
Net from tk�1 to the extracted tokens in tk such that

FðMþ
k�1Þ ¼M�

k ; ð2Þ

where M�
k is the initial marking in tk. Therefore, the final

marking of a TTPN at tk can be computed by the tuple
ðP;T; I;O;CP ;CT ;S;E;M

þ
kk�1;FÞ.

Similar to colored Petri Nets [24], each token has an ID
in TTPN. Therefore, the marking M ¼ f�1; �2; �3; . . . ; �ng
summarizes the distribution of tokens in a given TTPN. �n
is the set of tokens in place Pn such that �n ¼ fX1;X2; . . .g.
A token Xa is n tuple such that Xa ¼ ðxa1; xa2; xa3; . . . ; xanÞ
where xan is the nth attribute of the token Xa. The initial
marking M�

kk of a Petri Net is the marking that passed on
from the previous time step tk�1 and the final marking Mþ

kk

is the marking where all the enabled transitions have fired
such that there is no further enabled transition remains in
the time step tk.

Once all the tokens and their places are updated via the
function F, the next step is evaluating the Petri Net by firing
all the enabled transitions for each token. Similar to typical
Petri Nets, firing is done by using (1) for a given token Xa

such that

XaMþ
k ¼ XaM�

k þ ðO� IÞ:Ek; ð3Þ

where XaMþ
k represents the new location of the token Xa in

the Petri Net at tk. The same token needs to be in the all
input places to enable a transition and the transition
condition should be satisfied. In a given TTPN model, each
arch weight is considered 1. This simplifies the process for
the scientist because they do not consider the arc weights
(also called arc functions) to model a hypothesis or an
activity. Furthermore, TTPN considers the dynamics of the
system (i.e., merge, split, appear, disappear, and continua-
tion) internally, and therefore, a scientist does not need to
consider these events to model. This process incorporates
the time variance in Petri Nets and simplifies the modeling
of an activity (see Fig. 5c). Fig. 5 illustrates the overview of
how TTPN works. Consider the given Petri Net model with
its tokens in time step tk�1 with its existing tokens in Fig. 5a.
The green token (e.g., a feature) in P2 splits into three tokens
(e.g., three features) in time step tk (shown in Fig. 5b).
However, existing Petri Nets do not allow a token split

382 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 3, MARCH 2014

Fig. 5. (a) A scientist given Petri Net and its marking at the time step tk�1

is shown, (b) the marking of the PN changes in tk since the token splits
into three objects. However, because there is no transition is fired, the
marking cannot be changed in traditional Petri Nets; (c) to solve this,
each place is replaced with a sub Petri Net (subnet) in TTPN. The
subnet can model and allow the change in the marking of PN during the
transition from tk�1 to tk. (d) Each place (except the final place) in the PN
is replaced with this subnet and once the execution of the subnet is
completed for each place, the update process is completed and the
initial marking is obtained in tk.

while waiting in the same place. This situation is handled in
TTPN by using subnets. A subnet is a Petri Net in which the
time information is attached to both tokens and the arcs. In
TTPN, each place with its tokens (except the final place) is
first isolated from the given Petri Net model and converted
into a subnet as shown in Fig. 5c.

The purpose of the subnet is correlating the existing
tokens in a given Petri Net from tk�1 to the new tokens
extracted in tk by using the tracking information. For each
place Pi, the subnet creates two additional (pseudo) places
P 00i and P 0i (shown with black circles). Correlating the tokens
from tk�1 to the extracted ones in tk is graphically
represented by the combination of a black arc, a transition,
and a red arc. The red arcs are defined only for the tokens
from tk and the black arcs are defined only for the tokens
from tk�1. Each token is assumed to perform one of the
following events merge, split, continue or disappear during
the transition from tk�1 to tk. Therefore, these events can
be used to model the token dynamics with Petri Nets. The
transitions merge, splits, disappears, and continues are
obtained from the tracking information. For the merge
transition, the subnet removes b merging tokens from tk�1

and puts the merged token from tk into P 00i . Similarly, the
splits transition moves the splitting token from tk�1 in Pi and
puts a number of corresponding tokens from tk into P 00i . The
values of the variables a and b (along with the token IDs) are
obtained from the tracking information. The continues
transition removes a token from tk�1 in Pi and puts the
corresponding token from tk into P 00i . The disappears
transition removes disappearing tokens from Pi to P 0i .

Once the subnet reaches its final marking, the tokens
remaining in P 00i are the ones that changed their state
during the transition from tk�1 to tk, and the tokens in P 0i
are the disappearing ones during the transition from tk�1 to
tk. Depending on the domain, the tokens in both places P 00i
and P 0i can be moved back into place Pi, can be discarded
or can be moved back into one of the initial places. Fig. 5d
illustrates the update process for the Petri Net shown in
Fig. 5a. In Fig. 5d, first each place (except the final place) is
converted into a subnet, and each of these subnets is
executed independently. The update process replaces the
single token in Fig. 5a with three tokens. Once the update
process is completed, the isolated places with their updated
tokens are put back into the given model. Therefore,
while the direct transition from Figs. 5a to 5b is not defined
in typical Petri Nets, this transition becomes possible
through the TTPN (by defining and using subnets).

After running the update process, the new (updated)
tokens can be used to execute the given model to obtain the
final marking in tk. This is done by using (3).

3.1.1 Modeling with TTPN

The scientist can model an activity as a combination of
feature states and actions. Table 2 provides examples to
illustrate what a token, place, and transition may represent
in a Petri Net model. The activity model should be drawn
by considering only one instance of an activity. (Many
different Petri Nets could be drawn representing the same
activity). That instance (the model) should start from an
initial place where the activity starts and should end at a
final place where the activity completes.

One important aspect of modeling an activity is that the
scientist should consider the flow (movement) of tokens
from one place to the next, when drawing the model. Since
the purpose is detecting multiple events, essentially a token
should represent the progress of an instance of the activity
in a Petri Net. For example, assume that a place represents
“two-people handshaking” in computer vision. In that case,
a token represents a group of two people who are
handshaking. Similarly, while a token can represent a
feature in one place, in the next place a token can represent
a certain group of features in scientific visualization. This is
especially useful to simplify the modeling of formation type
of activities where a feature eventually transforms into a
superstructure (a group) [46].

Since the merge, split, disappear cases are implicitly
handled by TTPN (via the subnet shown in Fig. 5c), the
scientist do not need to consider these cases in his/her
model explicitly. This would greatly simplify the modeling
process for the scientist.

3.2 Activity Detection Framework with TTPN

Fig. 1 illustrates the overview of our proposed framework
and Fig. 6 shows the process in each time step. In Fig. 6, the
input to the system is the data set and the Petri Net model
defined by the scientist (see next section). In t0, Petri Net
data structure is created based on the given model.
Simultaneously, the data at t0 are processed. During the
data process, features, groups, variable changes or other
types of user interested entities are computed. Different
types of features can be extracted by using appropriate tools
(as in [1] or [35]) for a specific domain. The computed
metadata may include volume, mass, centroid, max and
min locations, max and min positions, orientation, shape
information, and so on. The metadata (or a group) forms the
tokens. Once all the tokens are formed, they are used to
execute the Petri Net starting from the initial place. Both the
metadata and the final marking Mþ

0 are passed into the next
time step t1.

In time step t1, first the data at t1 are processed to extract
features and groups. Then, their metadata is computed. This
metadata is transformed into tokens. Next step is correlating
the extracted features and groups to the extracted ones in t0.
Any of the available tracking algorithms (such as volume
overlap, prediction or time varying contour-based algo-
rithms) can be used to correlate features and groups or it
may be inherent in the simulation. Tracking step computes
various attributes including the tracking history of the
features (correspondence list), position changes, and any
other value/attribute that is a function of two consecutive
time steps. Both the newly formed (extracted) tokens and
computed tracking information are fed into the Petri Net for
activity detection. In Petri Net, the first step is correlating the
existing tokens in the Petri Net (from t0) to the tokens
extracted in t1. Once the Petri Net is updated by using the
tracking information (as described in Section 3.1), the
marking M�

1 is obtained. At this step, the Petri Net is
executed to obtain the final marking Mþ

1 .
Both the computed metadata at t1 and Mþ

1 are fed into
the next step. This process repeats itself recursively for each
time step. The metadata that comes from the previous time
step is used for tracking and the final marking that comes

OZER ET AL.: ACTIVITY DETECTION IN SCIENTIFIC VISUALIZATION 383

from the previous step is used to update the Petri Net in
each new time step. Tokens that fall into the final place are
the ones performing the complete activity.

When the evaluation over time is completed, the list of
tokens with their token histories in the final place can be
used to generate an activity list. This list, then, can be used
for visualization and further data analysis purposes.

3.3 Implementation

Our implementation is in C++ and uses a set of classes and
linked lists. The Petri Net data structure is formed
according to the model given by the scientist. Currently,
the scientist provides the model along with all the place and
transition conditions in a text-based config file. We are
currently developing a better interface that will help
scientist model an activity graphically. In a given Petri
Net model, the tokens are the only variables/classes that
change over time. Each token also has a token-history.
A token history is a list that adds the triple tuple (tj; Pi,
ObjID) to the token history at each iteration, where the tj is
the jth time step and ObjID is the object (token) ID. In the
merge case, all the merging object IDs form a triple tuple in
a token-history.

In our TTPN implementation, we use logical or
mathematical expressions formed of object attributes to
describe a feature’s state or action. A place condition is run
at each time step to determine whether a token still remains
in that place. Tokens that change their states are put into a
vector for a further evaluation to check if they changed their
places via the firing process. A transition condition is used
to determine whether that transition can be enabled for a

given token. If a token satisfies the transition condition, then
a second step checks whether the same token exists in all
the incoming places. Furthermore, a third step checks
whether the object satisfies “at least” one of the output
places’ conditions. After passing the third step, the
transition is enabled and ready to fire. Firing a transition
for a token removes the token from all the incoming places,
and puts it into the output places for which the token
satisfies the conditions.

In each domain or in each application, different feature
attributes can be computed and saved in different orders.
Moreover, a different combination of the available feature
attributes can be used as a condition for each place or for
each transition. To cover such variability and flexibility in
action and state definitions, in our implementation we use
Petri Net variables. A Petri Net variable is either a specific
feature attribute or a default action from a library (such as
merge, split, continuation or new born) and can belong to
either the current time step or the previous time step.

These variables take one of the following forms: “tcA#,”
“tpA#,”“tcD#” or “tpD#,” where the first two characters, tc
and tp, stand for the current time step and previous time
step, respectively. A# is an integer number and represents
the index (column) number of an attribute from a list of
attributes for a given feature and D# represents the index
number of the predefined action from a library (such as
Table 1). For example, “tcD4” means the fourth action from
the library (which is the split action in our implementation)
in the current time, and “tcA3” means the third attribute
value of a feature in the current time step. Let us consider
the transition: “Volume increase is more than percent 40 of the

384 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 3, MARCH 2014

Fig. 6. Flow diagram of the proposed framework. Activity model is used to create the Petri Net data structure. Tokens are formed based on the
extracted feature (or group) attributes. Once the final marking is obtained, the feature (or group) attributes and the final marking (Mþ

0) are passed
into the next time step. In the next time step, first the features are extracted; their attributes are computed and tokens of the current time step are
formed. Tracking information is combined with Mþ

0 to correlate these tokens to the ones in the Petri Net in the update process. This yields the initial
marking M�

1 . Once the Petri Net is updated, the execution process yields the final marking Mþ
1 . This process recursively continues in each new time

step. The tokens that fall into the final place are the ones that complete the activity.

previous volume value.” This can be expressed as a difference

of the volume values of the current and previous time steps.

Assuming the third value in the attributes file represents the

volume, we can construct the related transition condition

as “ðtcA3 � tpA3Þ > ð0:4 � tpA3Þ”. This Boolean expression

decides whether the condition is satisfied and serves as an

action detector. Similarly, the place conditions can define the

feature states. Our token-tracking Petri Net implementation

allows the use of built in functions for constructing similar

condition expressions.
Activity visualization uses the token history. In our

implementation, the token history is captured in an output

file summarizing all the detected activities. The output file

includes the participating objects’ IDs and their correspond-

ing place IDs in each time step for each detected activity.

3.4 Visualization

Effective time-varying visualization involves adapting and

changing the visualization parameters such as thresholds,

intervals or min/max values automatically over time. This

also includes adopting the transfer function from one time

step to the next or changing which feature is the primary

focus in response to the changes in the simulation.

Accordingly, the location of the camera (the view point)

and the lighting positions can be altered automatically. All

these processes require domain knowledge. Petri Nets can
be used to identify time steps for these changes to take place.

Activity detection adds functionality and flexibility to

time-varying visualization and allows event and state-based
data abstraction. For example, it can identify time steps

where the activity takes place. Moreover, activity detection
allows different visualizations highlighting that activity.

Different places of a Petri Net can be used to enhance
visualization. For instance, the features (tokens) at the

intermediate states, i.e., places, can be visualized separately
at each time step. If the scientist is interested in seeing what

features from time step 17 are at place 3 (P3), those features
can be highlighted in an isosurface or volume rendering.

Conversely, a scientist can ask at which time steps features
move into P3. Some of such enhanced visualization

techniques in our framework can be listed as follows:
Isolated activity visualization is the visualization of the time

steps of a single activity among all the detected activities.
Only the features that are currently participating in one user

specified activity are visualized. For example, time steps 70
to 73 in Fig. 7 visualize one user specified activity out of the
15 “Merge-Split” activities detected over 100 time steps.

Forecast activity visualization is the visualization of all the
features that “will” complete the specified activity starting

from the first time step. It visualizes the features and their

OZER ET AL.: ACTIVITY DETECTION IN SCIENTIFIC VISUALIZATION 385

Fig. 7. Detecting activities in scientific data sets: This visualization shows the “Merge-Split” activity. The activity is modeled as a Petri Net shown
above, and is defined as a feature merging and splitting within k0 ¼ 5 time steps. The activity detection process found 15 “Merge-Split” activities over
100 time steps. Three activities out of those 15 are visualized above. The colored dots in the Petri Net show the locations of the participating features
for each time step in the associated feature colors. All other vortices that do not participate in an active Merge-Split activity are shown transparent in
the visualization. Two of the found activities are shown in time steps 64-67. The associated time-varying transfer function is automatically generated
for the visualization. Petri Nets encapsulate the components that define an activity and help in abstracting time. For example, another “Merge-Split”
activity which occurs over four time steps instead of three is shown time steps 70-73. All of the detected 15 Merge-Split activities and the participating
tokens are visualized in a video available at [52].

evolutions over time performing the modeled activity. In
Fig. 9a, time step 8 highlights all the features that are
currently performing the packet formation event. This is an
example of visualizing features that will form a group in the
future. The single feature Feature_A in time step 8 evolves
and eventually forms a group (Packet_A) in the future (next)
time steps. Activity summary visualization is the visualization
of all the detected activities along with the entire data set (or
a portion of the data set, if the data set is excessively huge) in
a single visualization. Fig. 8e is one such visualization of the
entire data set. It shows how frequent the activities are and
where/when they occur. Graph-based activity visualization is
the visualization of the features in token form. In this
visualization, tokens show the progress of the activity on a
given Petri Net graph. Petri Net visualization of features in
Fig. 7 illustrates the graph-based activity visualization. In
addition to token-based visualization, a bar chart can be
attached to each place. Each bar on a chart can visualize the
total number of tokens in that time.

Activity detection can also help in transfer function
design. A time-varying transfer function can be generated
by using the activity detection results automatically, i.e., by
using the list of the tokens and their activity histories in the
final places. Examples of various visualizations are shown
in Figs. 7, 8, and 9.

4 CASE STUDIES AND RESULTS

In this section, we demonstrate the use of activity detection
in three different case studies.

4.1 Test Case: Merge-Split Activity in Turbulent
Vortex Structures

In our first application, we will look for “Merge-Split

activity.” The Merge-Split activity is where a single feature

first merges with another vortex and then splits again

within k0 time frames.
Similar activities were described in [34] and [47]

previously. Here, we show how our Petri Net approach

can simplify the process and successfully search for the

instances of the Merge-Split activity in a given data set. The

Petri Net model of this activity is shown in Fig. 7. For

testing, k0 was set to 5.
The data are a small data set from [1], which is a

pseudospectral simulation of coherent turbulent vortex
structures. The simulation data resolution is 1283 and the
data contain 100 time steps. The features (A set of connected
nodes where the data value is above a certain threshold)
are extracted, tracked, and their attributes (metadata) are
computed [1]. Running the Petri Net on this metadata
found 15 activities in 100 time steps. Three of them are
visualized in Fig. 7. First one of these three activities takes
place between time steps 64-66, the second one is detected
between time steps 65-68, and the third one is detected
between time steps 70-73. In the figure, each feature has a
distinct color, except that splitting features have the same
color. The validation process is done by visually inspecting
all the detected activities. During the visual inspection, we
observed that all the detected activities were indeed
merging and then splitting within five time steps.

386 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 3, MARCH 2014

Fig. 8. “Anomalous Plume bending” detection in a time-varying 3D plume data set is visualized. (a) Sample visualization of time-varying acoustic
imaging data shows one of the three plumes and the anomalous bending activities in the first 15 time steps of the data. The anomalies that do not fit
the defined periodic movement between the plume bending states are circled in red. (b) Possible plume bending states are shown with blue arrows,
where �2 and 2 represent maximum bending and �1 and 1 represents slight bending in z-x plane; these states are used to illustrate the anomalies
shown in Fig. 8a. (c) Possible plume states are redefined in 3D for the PN shown in Fig. 8d. Each of these states is represented by a place in the
Petri Net (with its respective place ID) (d) The PN model for the “Anomalous Plume Bending.” In the PN model, T 1 ¼ T 2 ¼ T 3 ¼ T 4 ¼ T 5 ¼ T 6

represents the condition that the angular change in x-y plane is less than 45 degrees and the plume either stays in its current state or changes to the
previous or next state. T 7 ¼ T 8 ¼ T 9 ¼ T 10 represents the condition that the angular change in x-y plane is more than 45 degrees or the plume
changes its state to one of the remaining states. (e) The plume bending data over the 26 days (formed of 479 time steps). The arrows represent the
time steps and each shows the direction in x-y plane and relative magnitude (size) of the plume. The pink stars show the anomaly time steps.

4.2 Tidal Forcing in Plumes

The COVIS project (a sonar platform connected to the
NEPTUNE Canada undersea cabled observatory) acousti-
cally images 3D hydrothermal plumes four times a day
producing an ever-increasing number of time steps [48].
Seafloor hydrothermal plumes exist in a turbulent environ-
ment with a variety of currents, and as they rise the plumes
bend in response to these currents [36].

Two different data sets capture the behavior of the
plumes from Grotto Vent in the Main Endeavour Field on
the Juan de Fuca Ridge. A 24-hr time series (with hourly
sampling) data set was collected in 2000 using the ROV
Jason. Fig. 8a shows one of three existing plumes in the
15 time steps of the data with 513 resolution. Each plume
image is scaled at a different scale to fit in the figure and to
focus on the bending rather than the texture or the length. A
three week time series (with sampling every 3 hours) was
collected using the NEPTUNE Canada cabled seafloor
observatory (479 time steps available) in token 2010.

When the Endeavour node of the observatory went back
on line in the autumn of 2011, it started producing 16 files
(24 GB) of acoustic imaging data a day (5,696 files per year).
As the data set becomes too large to process and view
manually, activities of interest need to be modeled and
searched for automatically. One such event, “anomalous-
bending,” is an inconsistent plume bending that does not
behave according to the expected cyclic movement.

For the first data set, we have used the metadata from
[36] and have applied a Petri Net analysis to determine if

the bending patterns observed in the plumes are consistent
with a semidiurnal tidal cycle (the data sets have multiple
plumes, in this example, we focus on only one of them).

In analogy with the in- and out-coming of coastal tides,
the changes in direction of tidal flow were anticipated to
imply a stagnant period in between directions during which
the plume would be vertical. Furthermore, the basic pattern
was assumed to be a simple back and forth between
narrowly defined states. The initial Petri Net assumed
motion only in a vertical ðx-zÞ plane and defined five states
that include the vertical stagnant case and two degrees of
bending in each of two directions. These states are shown in
Fig. 8b. We then use this Petri Net to model the assumed
normal process of gentle progressive changes and detect the
anomalies (abrupt changes) along the x-z plane.

We observe three instances of anomalous-bending at
times steps 9, 10, and 12 (circled in red in Fig. 8a) within the
first plume data set. Our Petri Net algorithm provides
results that match the visually picked results. As a test case,
this confirmed that the Petri Net algorithm could detect
abrupt changes in bending direction.

However, when applied to a larger data set, the results of
the initial Petri Net model let the scientist to see that the
initial model did not consider the 3D nature of ocean
currents and plume responses; the classification of all
bending directions as N (þ) or S (�) resulted in treating
some very small changes in direction as anomalies because
the change spanned the definition boundaries. Therefore,
the states and conditions were redefined to allow for a

OZER ET AL.: ACTIVITY DETECTION IN SCIENTIFIC VISUALIZATION 387

Fig. 9. Wall-bounded turbulence DNS, (a) sample visualization of packet formations in time steps 8-13, an example formation of a packet (Packet_A)

is circled in purple, (b) a PN model for the packet formation event, where P1 and P2 represent single hairpin vortex, P3 and P4 represent packets

including multiple hairpin vortices, (c) an illustration of a packet (a group of hairpin vortices) and a super structure formed of packets, (d) the total

number of extracted packets and features (hairpin vortices) in each time step.

greater variability in direction while still restricting the
magnitude of changes over a single time step. Consider the
angles in 3D between z-axis and x-y plane (Fig. 8c). This
model specifies several states of bending between vertical
and highly bent and expects that the change over a single
time step neither exceed shifting one bending state or
changing direction by more than 45 degrees. Any larger
shifts in bending or direction are considered an anomaly.
The new Petri Net model is shown in Fig. 8d and it has
detected 131 time steps that showed anomalies out of the
479 available time steps. The available 479 time steps are
plotted along the x-axis (where the unit is in days) in Fig. 8e.
For each day, the magnitude of Plume A bending and its
major direction is represented using an arrow. The anomaly
events are highlighted with a pink star.

As the visualization suggests, a large (�30%) fraction of
the time steps have been identified as anomalous. The
scientist validated these Petri Net results. The high
percentage value indicated that the plume bending varies
more and changes more erratically than anticipated. Future
refinements of the model include broadening the allowed
direction change or reducing the number of bending states.
Alternative models looking for time periods of no change or
high change are also studied. These results have been
further presented and discussed in [48] and [49].

4.3 Packet Formation in Wall-Bounded Turbulence
Flows

In DNS of wall-bounded turbulence flow, scientists have
been interested in searching for the existence of groups of
coherent but unconnected features, their formation, dy-
namic evolution, and number of these groups [7], [46]. An
illustration of such a group is shown in Fig. 9c [50]. The
yellow hairpin vortices (features) move coherently inducing
a secondary (blue) fluid mass of low momentum. These
coherent structures are called packets. (This is analogous to
groups of humans walking coherently in a crowd or to a
school of fish). Notice that, in general, the hairpins are not
connected within a packet. Each packet includes varying
number of hairpins where these hairpins should be aligned
at a downstream-leaning angle (�) and the distance between
the hairpins should not exceed a predefined physically
meaningful value. Some of these packets lead to the
formation of younger packets over time. Moreover, among
all these packets, some act coherently forming super
structures (as illustrated in the grouping of Fig. 9c) inducing
meandering regions of low momentum. The activity we are
interested in is the “packet formation” event which is
characterized by a single hairpin evolving into a packet
formed of multiple features over time [7].

The data sets are currently at a resolution of 2;520 �
1;120� 110. In this work, we took a subset of the data with
the resolution of 384� 256� 69 to test the hypothesis. This
simulation data (shown in Fig. 9a) has 46 time steps. Fig. 9b
shows the Petri Net model for packet formation. In Fig. 9b,
P1 and P2 represent a packet formed of a single feature; P3

and P4 represent a packet formed of multiple features in
Fig. 9b. The activity (packet formation) starts at P1 (initial
place) and ends at P4 (final place). Notice that the transition
“A group of hairpins moving together” can be replaced
with another Petri Net to detect and identify groups.

Group dynamics needs to be computed as a part of the
tracking algorithm. This is done by group tracking [44].
Feature extraction is performed at the threshold 0:1 � 10�3

via a region growing algorithm and the objects with the
volume lower than 25 are filtered. The average number of
extracted features is 308 and the average number of found
groups is 163 in 46 time frames. Fig. 9d demonstrates the
total number of found features and packets in each time
step. The PN model yielded 288 packet formation activities
over 46 time steps. Fig. 9a visualizes the portion of the
activities that take places in the time steps between 8 and 13.
It is apparent that the single Feature_A (circled in purple)
transforms into the Packet_A in the following time steps.
All other packets that are not currently performing the
modeled activity are transparent. Preliminary results of this
study have been presented in [51].

5 DISCUSSION AND CONCLUSION

Defining and refining the Petri Net model was an
interactive process for both scientists in case studies 4.2
and 4.3. The future work will involve creating a better
interface that allows the scientist to define activity models
graphically. We are also extending the framework to
operate in-situ, where the data are produced. By consider-
ing questions such as when an event occurs or what events
are occurring at a particular time, we can visualize the data
in a more compact way.

In this work, we introduce the concept of activity
detection for scientific visualization and show how a
scientist can utilize activity detection and automate the
process of searching for important events in time-varying
simulations. Moreover, we demonstrate how activity detec-
tion with Petri Nets can be used to validate a hypothesis in
scientific simulations.

A scientist can formulate an idea about how features
interact and then search for that activity among thousands
of time steps. Moreover, we enhance Petri Nets to consider
feature dynamics in scientific simulations and to detect
simultaneous activities in time-varying data sets. Petri Nets
are model-based techniques and do not require training
data to model the activity. Instead, they use the domain
scientist’s knowledge and let the scientist represent the
activity in a semantically meaningful way. The different
case studies demonstrate that while the domains and actors
are different, the concept of activity detection can be applied
to all. Our framework went over all the time steps and
pulled out the relevant features and time steps effectively
into more manageable chunks. Multiple subnets can be
defined to model various domain dynamics in TTPN.

In this paper, all the applications were based on
physically observable coherent features. However, notice
that Petri Nets are not limited to the detection of the
activities of only coherent features. The proposed frame-
work can also be applied to detect the activities of specific
nodes (or quantities) in both Lagrangian and Eulerian
simulations. For example, activities such as “the minimum
pressure remains constant for five time steps” can still be
modeled and detected by Petri Nets. In this case, the
segmentation step of the framework would become trivial

388 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 3, MARCH 2014

because either each node, a quantity or the entire domain
would become a token in TTPN.

One of the main challenges in scientific data analysis is
creating the training set or ground truth for the use of
available machine learning or data mining techniques in
scientific simulations. Petri Nets can also create the
necessary training data set from the semantic descriptions
for further analysis with other data mining techniques. A
semantic-based approach (such as Petri Nets) allows
exploratory knowledge discovery besides detecting certain
events in time-varying data sets.

Data rates are increasing exponentially. Scientists are
computing ever larger simulations and collecting increasing
amounts of complex sensor data. Automated activity
detection techniques are necessary to filter the data and
provide a useful and meaningful way for scientists interact
with the data.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of SciDAC
Institute for Ultra-Scale Visualization, http://vis.cs.ucdavis.
edu/Ultravis/, DOE #DE-FG02-09ER25977 and US Na-
tional Science Foundation (NSF) grant 0825088. They would
also like to thank the anonymous reviewers for their
constructive comments.

REFERENCES

[1] D. Silver and X. Wang, “Tracking and Visualizing Turbulent 3d
Features,” IEEE Trans. Visualization and Computer Graphics, vol. 3,
no. 2, pp. 129-141, Apr.-June 1997.

[2] M. Albanese, R. Chellappa, V. Moscato, A. Picariello, V.S.
Subrahmanian, P. Turaga, and O. Udrea, “A Constrained
Probabilistic Petri Net Framework for Human Activity Detection
in Video,” IEEE Trans. Multimedia, vol. 10, no. 8, pp. 1429-1443,
Dec. 2008.

[3] J.K. Aggarwal and M.S. Ryoo, “Human Activity Analysis: A
Review,” ACM Computing Surveys, vol. 43, article 16, 2010.

[4] R.P. Botchen, S. Bachthaler, F. Schick, M. Chen, G. Mori, D.
Weiskopf, and T. Ertl, “Action-Based Multifield Video Visualiza-
tion,” IEEE Trans. Visualization and Computer Graphics, vol. 14,
no. 4, pp. 885-899, July 2008.

[5] C. Castel, L. Chaudron, and C. Tessier, “What Is Going on? A
High Level Interpretation of Sequences of Images,” Proc. Workshop
Conceptual Descriptions Images (ECCV), pp. 13-27, 1996.

[6] M.L. Parry, P. Legg, D.H.S. Chung, I.W. Griffiths, and M. Chen,
“Hierarchical Event Selection for Video Storyboards with a Case
Study on Snooker Video Visualization,” Proc. IEEE Visualization
’11, 2011.

[7] M.J. Ringuette, M. Wu, and M.P. Martin, “Coherent Structures in
Direct Numerical Simulation of Turbulent Boundary Layers at
Mach 3,” J. Fluid Mechanics, vol. 594, pp. 59-69, 2008.

[8] S. Bhattacharya, S. Habib, and K. Heitmann, “Dark Matter Halo
Profiles of Massive Clusters: Theory vs. Observations,” Astro-
physical J., vol. 766, 2011.

[9] J. Wei, H. Yu, R.W. Grout, J.H. Chen, and K.-L. Ma, “Visual
Analysis of Particle Behaviors to Understand Combustion
Simulations,” IEEE Computer Graphics and Applications, vol. 32,
no. 1, pp. 22-33, Jan. 2012.

[10] J.A. Insley, L. Grinberg, and M.E. Papka, “Visualizing Multiscale,
Multiphysics Simulation Data: Brain Blood Flow,” Proc. IEEE
Symp. Large Data Analysis and Visualization (LDAV), 2011.

[11] J.G. Luhmann, S.C. Solomon, J.A. Linker, J.G. Lyon, Z. Mikic, D.
Odstrcil, W. Wang, and M. Wiltberger, “Coupled Model Simula-
tion of a Sun-to-Earth Space Weather Event,” J. Atmospheric and
Solar-Terrestrial Physics, vol. 66, pp. 1243-1256, 2004.

[12] K.-L. Ma, E.B. Lum, H. Yu, H. Akiba, M.-Y. Huang, Y. Wang, and
G. Schussman, “Scientific Discovery through Advanced Visuali-
zation,” J. Physics: Conf. Series, vol. 16, no. 1, p. 491, 2005.

[13] E.M. Tapia, S.S. Intille, and K. Larson, “Activity Recognition in the
Home Using Simple and Ubiquitous Sensors,” Proc. Second Int’l
Conf. Pervasive Computing, pp. 158-175, 2004.

[14] A.I. Hernandez, G. Carrault, F. Mora, L. Thoraval, G. Passariello,
and J.M. Schleich, “Multisensor Fusion for Atrial and Ventricular
Activity Detection in Coronary Care Monitoring,” IEEE Trans.
Biomedical Eng., vol. 46, no. 10, pp. 1186-1190, Oct. 1999.

[15] P. Turaga, R. Chellappa, V.S. Subrahmanian, and O. Udrea,
“Machine Recognition of Human Activities: A Survey,” IEEE
Trans. Circuits and Systems for Video Technology, vol. 18, no. 11,
pp. 1473-1488, Nov. 2008.

[16] M. Goebel and L. Gruenwald, “A Survey of Data Mining and
Knowledge Discovery Software Tools,” ACM SIGKDD Exploration
Newsletter, vol. 1, no. 1, pp. 20-33, 1999.

[17] P. Rashidi, D.J. Cook, L.B. Holder, and M. Schmitter-Edgecombe,
“Discovering Activities to Recognize and Track in a Smart
Environment,” IEEE Trans. Knowledge & Data Eng., vol. 23, no. 4,
pp. 527-539, Apr. 2011.

[18] H. Storf, M. Becker, and M. Riedl, “Rule-Based Activity Recogni-
tion Framework: Challenges, Technique and Learning,” Proc.
Third Int’l Conf. Pervasive Computing Technologies for Haelthcare
(PervasiveHealth ’09), pp. 1-7, 2009.

[19] N. Ghanem, D. Dementhon, D. Doermann, and L. Davis,
“Representation and Recognition of Events in Surveillance Video
Using Petri Net,” Proc. Conf. Computer Vision and Pattern
Recognition Workshop (CVPR Workshop), 2004.

[20] G. Lavee, M. Rudzsky, E. Rivlin, and A. Borzin, “Video Event
Modeling and Recognition in Generalized Stochastic Petri Nets,”
IEEE Trans. Circuits and Systems for Video Technology, vol 20, no. 1,
pp. 102-118, Jan. 2010.

[21] M. Per�se, M. Kristan, J. Per�s, G. Mu�si�c, G. Vu�ckovi�c, and S.
Kova�ci�c, “Analysis of Multi-Agent Activity Using Petri Nets,”
Pattern Recognition, vol. 43, no. 4, pp.1491-1501, Apr. 2010.

[22] J.N.K. Liu, K. Wang, Y.-L. He, and X.-Z. Wang, “Formal
Representation and Verification of Ontology Using State Con-
trolled Coloured Petri Nets,” Reliable Knowledge Discovery, pp 269-
290, Springer, 2012.

[23] J.L. Peterson, Petri Net Theory and the Modeling of Systems. Prentice
Hall, 1981.

[24] R. David and H. Alla, Petri Nets & Grafcet. Prentice Hall, 1992.
[25] M. Chen, D. Ebert, H. Hagen, R.S. Laramee, R. Van Liere, K.-L.

Ma, W. Ribarsky, G. Scheuermann, and D. Silver, “Data,
Information, and Knowledge in Visualization,” IEEE Computer
Graphics and Applications, vol. 29, no. 1, pp. 12-19, Jan./Feb. 2009.

[26] N. Oliver, B. Rosario, and A. Pentland, “A Bayesian Computer
Vision System for Modeling Human Interactions,” Proc. Int’l Conf.
Vision Systems (ICVS ’99), Jan. 1999.

[27] Y.A. Ivanov and A.F. Bobick, “Recognition of Visual Activities and
Interactions by Stochastic Parsing,” IEEE Trans. Pattern Analysis &
Machine Intelligence, vol. 22, no. 8, pp. 852-872, Aug. 2000.

[28] J. Wei, Z. Shen, N. Sundaresan, and K.-L. Ma, “Visual Cluster
Exploration of Web Clickstream Data,” Proc. IEEE Conf. Visual
Analytics Science and Technology, 2012.

[29] G. Lavee, E. Rivlin, and M. Rudzsky, “Understanding Video
Events: A Survey of Methods for Automatic Interpretation of
Semantic Occurrences in Video,” IEEE Trans. Systems, Man, and
Cybernetics, Part C, vol. 39, no. 5, pp. 489-504, Sept. 2009.

[30] R. Poppe, “A Survey on Vision-Based Human Action Recogni-
tion,” Image and Vision Computing, vol. 28, pp. 976-990, 2010.

[31] R. Borgo, M. Chen, B. Daubney, E. Grundy, H. Janicke, G.
Heidemann, B. Hoferlin, M. Hoferlin, D. Weiskopf, and X. Xie, “A
Survey on Videobased Graphics and Video Visualization,” Proc.
Eurographics (State of the Art Reports), pp. 1-23, 2011.

[32] J. Woodring and H.W. Shen, “Multiscale Time Activity Data
Exploration via Temporal Clustering Visualization Spreadsheet,”
IEEE Trans. Visualization & Computer Graphics, vol. 15, no. 1,
pp. 123-137, Jan./Feb. 2009.

[33] W. Dou, X. Wang, D. Skau, W. Ribarsky, and M.X. Zhou,
“LeadLine: Interactive Visual Analysis of Text Data through
Event Identification and Exploration,” Proc. IEEE Conf. Visual
Analytics Science and Technology (VAST), pp. 93-102, 2012.

[34] A. Gezahegne and C. Kamath, “Tracking Non-Rigid Structures in
Computer Simulations,” Proc. IEEE 15th Int’l Conf. Image Processing
(ICIP), 2008.

[35] Topological Methods in Data Analysis and Visualization, V. Pascucci,
X. Tricoche, H. Hagen, J. Tierny, eds. Springer, 2011.

OZER ET AL.: ACTIVITY DETECTION IN SCIENTIFIC VISUALIZATION 389

[36] P.A. Rona, K.G. Bemis, D. Kenchammana-Hosekote, and D. Silver,
“Acoustic Imaging and Visualization of Plumes Discharging from
Black Smoker Vents on the Deep Seafloor,” Proc. IEEE Visualiza-
tion ’98, pp. 475-478, 1998.

[37] D. Laney, P.-T. Bremer, A. Mascarenhas, P. Miller, and V.
Pascucci, “Understanding the Structure of the Turbulent Mixing
Layer in Hydrodynamic Instabilities,” IEEE Trans. Visualization &
Computer Graphics, vol. 12, no. 5, pp. 1053-1060, Sept. 2006.

[38] G. Ji and H.-W. Shen, “Feature Tracking Using Earth Mover’s
Distance and Global Optimization,” Proc. Pacific Graphics ’06, 2006.

[39] F. Reinders, F.H. Post, and H.J.W. Spoelder, “Visualization of
Time-Dependent Data Using Feature Tracking and Event Detec-
tion,” The Visual Computer, vol. 17, no. 1, pp. 55-71, 2001.

[40] G. Ji, H-W. Shen, and R. Wenger, “Volume Tracking Using Higher
Dimensional Isosurfacing,” Proc. IEEE Visualization ’03, pp. 209-
216, 2003.

[41] F.-Y. Tzeng and K.-L. Ma, “Intelligent Feature Extraction and
Tracking for Large-Scale 4D Flow Simulations,” Proc. ACM/IEEE
Conf. Supercomputing, 2005.

[42] J. Caban, A. Joshi, and P. Rheingans, “Texture-Based Feature
Tracking for Effective Time-Varying Data Visualization,” IEEE
Trans. Visualization & Computer Graphics, vol. 13, no. 6, 1472-1479,
Nov. 2007.

[43] C. Muelder and K.-L. Ma, “Interactive Feature Extraction and
Tracking by Utilizing Region Coherency,” Proc. IEEE Pacific
Visualization Symp., Apr. 2009.

[44] S. Ozer, J. Wei, D. Silver, K.-L. Ma, and P. Martin, “Group
Dynamics in Scientific Visualization,” Proc. IEEE Symp. Large Data
Analysis and Visualization (LDAV), 2012.

[45] S. Ozer, “Activity Detection in Scientific Visualization,” PhD
dissertation, Rutgers Univ., NJ, 2013.

[46] C. O’Farrrell and M.P. Martin, “Chasing Eddies and Their Wall
Signature in DNS Data of Turbulent Boundary Layers,”
J. Turbulence, vol. 10, pp. 1-22, 2009.

[47] K.P.-T. Bremer, G. Weber, V. Pascucci, M. Day, and J. Bell,
“Analyzing and Tracking Burning Structures in Lean Premixed
Hydrogen Flames,” IEEE Trans. Visualization & Computer Graphics,
vol. 16, no. 2, pp. 248-260, Mar. 2010.

[48] K.G. Bemis, G. Xu, J. Rabinowitz, P.A. Rona, D.R. Jackson, and
C.D. Jones, “Understanding Plume Bending at Grotto Vent on the
Endeavour Segment,” Proc. AGU Fall Meeting, 2011.

[49] K.G. Bemis, S. Ozer, G. Xu, P.A. Rona, and D. Silver, “Event
Detection for Hydrothermal Plumes: A Case Study at Grotto
Vent,” Proc. AGU Fall Meeting, Dec. 2012.

[50] R. Adrian, C. Meinhart, and C. Tomkins, “Vortex Organization in
the Outer Region of the Turbulent Boundary Layer,” J. Fluid
Mechanics, vol. 422, pp. 1-54, 2000.

[51] Y.C. Kan, C. Helm, and M.P. Martin, “Turbulence Structure and
Wall Signature in Hypersonic Turbulent Boundary Layer,” Proc.
15st AIAA Aerospace Sciences Meeting, 2013.

[52] Vizlab, Rutgers Univ., NJ http://coewww.rutgers.edu/www2/
vizlab/gallery/, 2013.

Sedat Ozer received the BSc degree in electro-
nics engineering from Istanbul University, the
MSc degree in electrical engineering from
the University of Massachusetts, Dartmouth,
and the PhD degree in electrical and computer
engineering from Rutgers University. His re-
search focuses on pattern recognition, machine
learning including kernel machines and statisti-
cal learning, signal/data/image processing,
tracking, and activity detection-related problems

in both computer vision applications and scientific simulations.

Deborah Silver received the BS degree from
Columbia University School of Engineering and
the MS and PhD degrees from Princeton
University in computer science. She is a
professor in the Department of Electrical and
Computer Engineering at Rutgers, The State
University of New Jersey and the executive
director of the Professional Science Master’s
Program. Her area of research is in scientific
visualization she has been a PI in the Vizlab at

the CAIP Center, Rutgers University because joining the faculty. She
has taught courses in computer graphics, visualization, data structures,
software engineering and robotics. She is involved in different
visualization projects including oceanic visualization, medical visualiza-
tion, CFD visualization, and volume graphics. She has been a co-chair
of the papers session and a program co-chair of the yearly IEEE
Visualization conference, she has been the vice chair of operations for
the IEEE Technical Committee on Computer Graphics (1993-2000), and
she has been on the editorial committee of the IEEE Transaction on
Visualization and Computer Graphics (1995-2000). She was the
associate dean for Continuing and Professional Education for the
School of Engineering from 2008-2010.

Karen Bemis received the bachelor’s degree
from Rice University (in Houston, TX) in geo-
physics in 1988 and went on to the MIT/WHOI
Joint Program in Oceanography to study heat
flux. There, she learned to love hydrothermal
systems and fluid dynamics, while working with
Dick Von Herzen and Debbie Smith. She left the
Joint Program in 1991 with the master’s degree
in oceanography. She received the PhD degree
in geological sciences at Rutgers in 1995 on the

morphology of volcanos, especially small explosive volcanoes called
cinder cones. After a short internship at the NJ Geological Survey
studying groundwater flow in the Passaic River System, she returned to
hydrothermal systems in 1996 to work with Peter Rona as a postdoc in
the Institute of Marine and Coastal Sciences at Rutgers. Through Peter,
she was introduced to Deborah Silver and scientific visualization.
Currently, she is a research associate in IMCS. She continues to study
cinder cones in Guatemala and sonar imaging of hydrothermal systems
while exploring other uses of scientific visualization in geologic problems
and the psychology of understanding and using visualizations.

Pino Martin received the BEng degree from
Boston University and the MS and PhD degrees
from University of Minnesota. She is a professor
at the Department of Aerospace Engineering,
University of Maryland. Her research areas
include computational fluid dynamics, numerical
simulation of turbulent flows, direct numerical
and large eddy simulation, numerical models for
large eddy simulations and Reynolds-averaged
Navier Stokes calculations, numerical methods

for compressible turbulence, physics of compressible turbulence, shock
waves and turbulence interaction, turbulence and finite-rate chemistry
interaction, surface reactions, and fluid interaction.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

390 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 20, NO. 3, MARCH 2014

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

