Bilkent University
Department of Computer Engineering


Interactive Crowd, Multi-agent, and Traffic Simulation


Dinesh Manocha
Department of Computer Science
University of North Carolina at Chapel Hill

Modeling of multiple agents and crowd-like behaviors has been widely studied in virtual reality, robotics, computer animation, psychology, social sciences, and civil and traffic engineering.

Realistic visual simulation of many avatars requires modeling of group behaviors, pedestrian dynamics, motion synthesis, and graphical rendering. In this talk, we give an overview of the work related to multi-agent and crowd simulation at UNC Chapel Hill. This includes new algorithms for local collision avoidance based on reciprocal velocity obstacles, automatic generation of emerging behaviors using composite agents or proxies, directing crowd simulation using navigation functions, data-driven crowd simulation, and new parallel algorithms that can exploit the capabilities of upcoming multi-core and many-core processors and can handle up to 200K agents at interactive rates. We demonstrate their application to evacuation planning, urban simulations, traffic engineering and simulating large crowds at social or religious gatherings.

Joint work with GAMMA group members at UNC Chapel Hill

Bio: Dinesh Manocha is currently the Phi Delta Theta/Mason Distinguished Professor of Computer Science at the University of North Carolina at Chapel Hill. He received his Ph.D. in Computer Science at the University of California at Berkeley 1992. He has received Junior Faculty Award, Alfred P. Sloan Fellowship, NSF Career Award, Office of Naval Research Young Investigator Award, Honda Research Initiation Award, Hettleman Prize for Scholarly Achievement. Along with his students, Manocha has also received 12 best paper & panel awards at the leading conferences on graphics, geometric modeling, visualization, multimedia and high-performance computing. He is a Fellow of ACM and AAAS.

Manocha has published more than 300 papers in the leading conferences and journals on computer graphics, geometric computing, robotics, and scientific computing. He has also served as a program committee member and program chair for more than 75 conferences in these areas, and editorial boards of many leading journals. Some of the software systems related to collision detection, GPU-based algorithms and geometric computing developed by his group have been downloaded by more than 100,000 users and are widely used in the industry. He has supervised 18 Ph.D. dissertations.


DATE: 20 May, 2011, Friday @ 13:40