Bilkent University
Department of Computer Engineering


Pipelined Fission for Stream Programs with Dynamic Selectivity and Partitioned State


Habibe Güldamla Özsema
MSc Student
Computer Engineering Department
Bilkent University

There is an ever increasing rate of digital information available in the form of online data streams. In many application domains, high throughput processing of such data is a critical requirement for keeping up with the soaring input rates. Data stream processing is a computational paradigm that aims at addressing this challenge by processing data streams in an on-the-fly manner, in contrast to the more traditional and less efficient store-and-then process approach. In this study, we study the problem of automatically parallelizing data stream processing applications in order to improve throughput. The parallelization is automatic in the sense that stream programs are written sequentially by the application developers and are parallelized by the system. We solve the problem of pipelined fission, in which the original sequential program is parallelized by taking advantage of both pipeline parallelism and data parallelism at the same time. Our pipelined fission solution supports partitioned stateful data parallelism with dynamic selectivity and is designed for shared-memory multi-core machines.


DATE: 25 December, 2014, Thursday @ 09:15