
Sharing DSS by the Chinese Remainder Theorem

Kamer Kaya1, Ali Aydın Selçuk2

1 Ohio State University, OH, USA kamer@bmi.osu.edu
2 Bilkent University, Turkey selcuk@cs.bilkent.edu.tr

Extended Abstract

1 Introduction

Threshold cryptography deals with the problem of sharing a sensitive secret among
a group of n users so that the secret can be reconstructed only when t of them come
together. This problem is known as the secret sharing problem and several secret
sharing schemes (SSS) have been proposed in the literature (e.g., [1, 2, 6]).

Threshold cryptography also deals with the function sharing problem. A func-
tion sharing scheme (FSS) requires distributing the function’s computation accord-
ing to the underlying SSS such that each part of the computation can be carried
out by a different user and then the partial results can be combined to yield the
function’s value without disclosing individual secrets. The FSSs in the literature
traditionally used Shamir’s SSS [6] until a recent work by Kaya and Selcuk [5]
showed how to use the Asmuth-Bloom SSS [1] for function sharing.

The Digital Signature Standard (DSS) is the current US government standard
for digital signatures. Sharing DSS is an interesting problem and a neat solution
was given by Gennaro et al. [4], based on Shamir’s SSS.

In this paper, we propose a new threshold scheme for DSS with the Asmuth-
Bloom SSS. To the best of our knowledge, this is the first provably secure threshold
DSS scheme based on the Chinese Remainder Theorem (CRT). In this extended
abstract, we omit the proofs which will be given in the full version of the paper.

2 Digital Signature Standard

The DSS signature scheme [3] can be summarized as follows:

∙ Key Generation Phase: Let p and q be large prime numbers, where q∣(p−1)
and let g ∈ ℤ∗p be an element of order q. The private key � ∈R ℤ∗q is chosen
randomly and the public key � = g� mod p is computed.

1



∙ Signing Phase: The signer first chooses a random ephemeral key k ∈R ℤ∗q
and then computes the signature (r, s), where

r = (gk
−1

mod p) mod q,

s = k(w + �r) mod q

for a hashed message w ∈ ℤq.

∙ Verification Phase: The signature (r, s) is verified by checking

r
?
= (gws

−1
�rs

−1
mod p) mod q,

where s−1 is computed in ℤ∗q .

3 The Asmuth-Bloom Secret Sharing Scheme

The Asmuth-Bloom SSS [1] shares a secret d among n parties such that any t users
can reconstruct the secret by the CRT. The scheme below is a slightly modified
version by Kaya and Selcuk [5] in order to obtain better security properties.

∙ Dealing Phase: To share a secret d among n users, dealer does the following:

1. A set of relatively prime integers m0 < m1 < . . . < mn are chosen,
where m0 is a prime and

t∏
i=1

mi > m0
2
t−1∏
i=1

mn−i+1. (1)

2. Let M denote
∏t
i=1mi. The dealer computes y = d+Am0, where A

is a positive integer generated randomly such that 0 ≤ y < M .

3. The share of the ith user, 1 ≤ i ≤ n, is yi = y mod mi.

∙ Combining Phase: Let S be a coalition of t users, and MS =
∏
i∈Smi.

1. Let MS∖{i} denote
∏
j∈S,j ∕=imj and M ′S,i be the multiplicative inverse

of MS∖{i} in ℤmi . First, the ith user computes

ui = yiM
′
S,iMS∖{i} modMS .

2. The users compute y =
∑

i∈S ui modMS and then obtain the secret
d by computing d = y mod m0.

2



4 The Modified Asmuth-Bloom SSS

In the literature, the sequence, m0 < m1 < . . . < mn, satisfying (1), is called a
(t, n) Asmuth-Bloom sequence. An interesting property of these sequences, which
will be used in our scheme, is given in Lemma 1.

Lemma 1. An (⌈n/2⌉, n) Asmuth-Bloom sequence is a (k, n) Asmuth-Bloom se-
quence for all k such that 1 ≤ k ≤ n.

To adapt the original scheme for threshold DSS, we use such an (⌈n/2⌉, n)
sequence. Note that this sequence can be used for any (k, n) Asmuth-Bloom SSS
where M =

∏k
i=1mi. Then, we multiply the right side of (1) by n and obtain

t∏
i=1

mi > nm0
2
t−1∏
i=1

mn−i+1. (2)

Lastly, we change the definition of M to

M =

⌊∏t
i=1mi

n

⌋
. (3)

4.1 Arithmetic Properties of the Modified Asmuth-Bloom SSS

Suppose several secrets are shared with common parameters t, n, and moduli mi

for 1 ≤ i ≤ n, chosen according to (2). The shareholders can use the following
properties to obtain new shares for the sum and product of the shared secrets.

Proposition 1. Let d1, d2, ⋅ ⋅ ⋅ , dn be secrets shared by the Asmuth-Bloom SSS
with common parameters t, n, and moduli mi for 1 ≤ i ≤ n. Let yij be the
share of the ith user for secret dj . Then, for D = (

∑n
i=1 di) mod m0 and Yi =

(
∑n

j=1 yij) mod mi, we haveD t← (Y1, Y2, ⋅ ⋅ ⋅ , Yn), i.e., by using t of Y1, Y2, ⋅ ⋅ ⋅ , Yn,
the secret D can be constructed.

Proposition 2. Let d1, d2 be secrets shared by the Asmuth-Bloom SSS with common
parameters t, n and moduli mi for 1 ≤ i ≤ n. Let yij be the share of the ith user
for secret dj . Then, for D = d1d2 mod m0 and Yi = yi1yi2 mod mi, we have

D
2t← (Y1, Y2, ⋅ ⋅ ⋅ , Yn).

5 Sharing DSS

Our approach for this problem can be summarized as follows: First the users in the
signing coalition S will share a random k value by using the joint random secret
sharing primitive, JOINT-RSS, in which each user of S contributes to the sharing
of k. Note that this procedure only generates the shares for k, not k itself. Next,

3



the JOINT-EXP-INVERSE primitive is called to compute r = (gk
−1

mod p) mod
q. Last, the signature will be obtained by using r and the shares of k and �.

Below, S denotes the signing coalition of size 2t+2. Without loss of generality,
we assume S = {1, 2, . . . , 2t + 2}. We will first describe the primitive tools
we used in the proposed CRT-based threshold DSS scheme. Note that for each
primitive, S is the set of participants for that primitive.

5.1 Joint Random Secret Sharing

In a JOINT-RSS scheme, each user in the signing coalition S contributes something
to the share generation process and obtains a share for the resulting random secret:

1. Each user j ∈ S chooses a random secret dj ∈ ℤm0 and shares it as dj
t←

(y1j , y2j , ⋅ ⋅ ⋅ , y(2t+2)j), where yij is the share of the ith user.

2. The ith user computes Yi =
∑2t+2

j=1 yij mod mi. By Proposition 1, D t←
(Y1, Y2, . . . , Y2t+2), for D =

∑2t+2
i=1 di mod m0.

In JOINT-ZS, our related zero sharing scheme, each user in S contributes
something to the zero sharing process and obtains a share for the resulting zero.

5.2 Computing gd mod p

For threshold DSS, we need to share and compute gd mod p for a jointly shared
secret d ∈ ℤq. The scheme JOINT-EXP-RSS described below constructs an inter-
mediate value for Fd = gd mod p, which will later be corrected:

1. To compute Fd = gd mod p for a jointly shared secret d, S uses JOINT-RSS
to generate and share d as d t← (y1, y2, . . . , y2t+2), with m0 = q.

2. Each user i ∈ S computes ui,d = yiMS∖{i}M
′
S,i) modMS , where M ′S,i is

the inverse of MS∖{i} mod mi, and broadcasts

fi,d = gui,d mod p.

3. The intermediate value for gd mod p is computed as

Fd′ =
∏
i∈S

fi,d mod p.

Observe that d = ((
∑

i∈S ui) modMS) mod q, whereas this construction
process computes Fd′ = gd

′
mod p for d′ =

∑
i∈S ui mod q. Since there are

2t + 2 users in S and ui < MS for all i, d = d′ − �dMS mod q for some integer
0 ≤ �d ≤ 2t+ 1.

4



5.3 Computing gk
−1

mod p

The JOINT-EXP-INVERSE procedure described below uses the JOINT-RSS, JOINT-
ZS, and JOINT-EXP-RSS primitives and computes r without revealing k:

1. S uses JOINT-RSS to jointly share random secrets k t← (k1, k2, . . . , k2t+2),
a

t← (a1, a2, . . . , a2t+2), and uses JOINT-ZS to distribute shares for zero,
i.e., 0 2t← (z1, z2, . . . , z2t+2).

2. S constructs v = (ak) mod m0 from shares vi = (aiki + zi) mod mi,
i ∈ S. Note that v 2t+1← (v1, v2, . . . , v2t+2), as described in Section 4.1.

3. S uses JOINT-EXP-RSS to obtain

Fa′ =
∏
i∈S

fi,a =
∏
i∈S

gui,a ≡ ga′ ≡ ga+�aMS mod p and

Fk′ =
∏
i∈S

fi,k =
∏
i∈S

gui,k ≡ gk′ ≡ gk+�kMS mod p.

S also computes

Fa′k′ =
∏
i∈S

fi,ak =
∏
i∈S

Fa′
ui,k ≡ ga′k′ ≡ g(a+�aMS)(k+�kMS) mod p

≡ gvFa′�kMSFk′
�aMSg−�a�kM

2
S mod p.

4. S checks the following equality

Fa′k′
?
= gvFa′

jkMSFk′
jaMSg−jajkM

2
S mod p (4)

for all 0 ≤ ja, jk ≤ 2t+1 and finds the (ja = �a, jk = �k) pair that satisfies
this equality. Once �a is found, Fa is computed as,

Fa = ga mod p = Fa′g
−�aMS mod p.

5. The signing coalition S computes gk
−1

mod p = Fa
(v−1) mod p.

5.4 Threshold DSS Scheme

The phases of the proposed threshold DSS scheme are described in Fig. 1.
Let Y (�), Y (k), and Y (z) be the smallest integers, such that

� = Y (�) mod m0, k = Y (k) mod m0, 0 = Y (z) mod m0,

�i = Y (�) mod mi, ki = Y (k) mod mi and zi = Y (z) mod mi, for i ∈ S.

Since � and k are jointly shared with threshold t, due to Proposition 1, they can
be constructed with t shares. Hence, both Y (�) and Y (k) are less than

∏t
i=1mi.

5



∙ Key Generation Phase: Let � ∈R ℤ∗q be the private signature key. The dealer

sets m0 = q and shares � t← (�1, �2, . . . , �n).

∙ Signing Phase: To sign a hashed message w ∈ ℤq , the signing coalition S of
size 2t+ 1 first computes r = (gk

−1

mod p) mod q by JOINT-EXP-INVERSE

described in Section 5.3. To compute

s = k(w + r�) mod q,

each user i ∈ S computes

si = (ki(w + r�i) + zi) mod mi

and broadcasts it where the shares 0
2t+1← (z1, z2, . . . , z2t+2) are obtained by

using the primitive JOINT-ZS. Then the signature s is computed by using the
reconstruction process for the Asmuth-Bloom SSS with 2t+ 2 shares.

∙ Verification Phase is the same as the standard DSS verification.

Figure 1: CRT-based threshold DSS signature.

On the other hand, Y (z) requires 2t+ 1 of the shares z1, . . . , z2t+2, hence, Y (z) <∏2t+1
i=1 mi. Since w, r < m0, we have

Y (k)
(
w + rY (�)

)
+ Y (z) < m0

t∏
i=1

mi

(
t∏
i=1

mi + 1

)
+

2t+1∏
i=1

mi,

which can be computed by a coalition of 2t + 2 by Proposition 2. Hence, s 2t+2←
(s1, s2, . . . , sn), i.e., s can be computed by 2t+ 2 partial signatures si, i ∈ S.

References

[1] C. Asmuth and J. Bloom. A modular approach to key safeguarding. IEEE
Trans. Information Theory, 29(2):208–210, 1983.

[2] G. Blakley. Safeguarding cryptographic keys. In Proc. of AFIPS National
Computer Conference, 1979.

[3] National Institute for Standards and Technology. Digital signature standard
(DSS). Technical Report 169, August 30, 1991.

[4] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS
signatures. Information and Computation, 164(1):54–84, 2001.

[5] K. Kaya and A. A. Selcuk. Threshold cryptography based on Asmuth-Bloom
secret sharing. Information Sciences, 177(19):4148–4160, 2007.

[6] A. Shamir. How to share a secret? Comm. ACM, 22(11):612–613, 1979.

6


	Introduction
	Digital Signature Standard
	The Asmuth-Bloom Secret Sharing Scheme
	The Modified Asmuth-Bloom SSS 
	Arithmetic Properties of the Modified Asmuth-Bloom SSS

	Sharing DSS 
	Joint Random Secret Sharing 
	Computing gd -5mumod5mu-p
	Computing gk-1 -5mumod5mu-p 
	Threshold DSS Scheme 


