
SECRET SHARING FOR GENERAL ACCESS STRUCTURES 1

Secret Sharing for General Access Structures
İlker Nadi Bozkurt, Kamer Kaya, and Ali Aydın Selçuk

Abstract—Secret sharing schemes (SSS) are used to distribute
a highly sensitive secret among a group of individuals so that
only when an authorized group of them come together can the
secret be reconstructed. The set of these authorized groups is
called the access structure. If the access structure only contains all
groups of size larger than a threshold value, the problem is called
threshold secret sharing. There exist several efficient solutions
in the literature proposed for threshold secret sharing and some
methods adapt threshold SSSs to general secret sharing problems
where the access structures can be more complex. In this paper,
we are interested in the adaptation of threshold SSSs based
on the Chinese Remainder Theorem (CRT) for general access
structures. Galibus and Matveev (2007) proposed a solution for
the same problem. We first modify their algorithm to work
over integers rather than polynomials. Then we show that this
modified algorithm is impractical and propose another one based
on splitting the secret into multiple parts. Experimental results
show that the proposed solution is better than the former in
terms of the information rate.

Index Terms—secret sharing, general access structures,
Asmuth-Bloom secret sharing.

I. INTRODUCTION

Secret sharing schemes (SSS) deal with the problem of the
distribution of a highly sensitive secret, such as the private key
of a cryptosystem, among a group of individuals so that only
certain authorized groups of individuals can later reconstruct it.
This problem and the first solutions to it were given by Shamir
[13] and Blakley [3] in 1979. Shamir’s solution to the secret
sharing problem is based on polynomial interpolation over a
finite field, whereas Blakley’s SSS is based on hyperplane ge-
ometry. A fundamentally different SSS is Asmuth-Bloom SSS
[1] which is based on the Chinese Remainder Theorem (CRT).
This SSS uses a special sequence of integers (called Asmuth-
Bloom sequences) for secret sharing.

In the original schemes of Shamir, Blakley and Asmuth-
Bloom, the secret is shared among n users such that t or more
users can reconstruct the secret but smaller groups cannot.
These schemes are examples of (t, n) threshold secret sharing
schemes. In the general secret sharing problem, authorization
of groups may require more complex rules. General access
structures, which we describe in the next section, are used for
this purpose.

For general access structures, the challenge in using
Asmuth-Bloom SSS is the generation of the appropriate

İlker Nadi Bozkurt works as a researcher at TÜBİTAK-UEKAE, Ankara,
Turkey, e-mail: ilker.nadi@uekae.tubitak.gov.tr.

Kamer Kaya is a postdoctoral researcher at CERFACS, France, e-mail:
kamer@cerfacs.fr.

Ali Aydın Selçuk is with the Department of Computer Engineering, Bilkent
University, Ankara, 06800, Turkey, e-mail: selcuk@cs.bilkent.edu.tr.

This work is supported in part by the Turkish Scientific and Technological
Research Agency (TÜBİTAK), under grant number 108E150.

Asmuth-Bloom sequence for the specific access structure
at hand. Galibus and Matveev [5] proved that any access
structure can be realized using Mignotte SSS [12], which is
very similar to Asmuth-Bloom SSS. Originally, both Asmuth-
Bloom sequences and Mignotte sequences are composed of
pairwise coprime integers, while this condition is not true for
their generalizations. Galibus et al. [5], [6] characterized the
access structures which can be realized using non-generalized
Asmuth-Bloom or Mignotte sequences and proposed a method
to obtain generalized sequences for arbitrary access structures.
The method of Galibus et al. works on polynomial rings and
constructs generalized Mignotte sequences containing polyno-
mials. In this paper, we show that with slight modifications,
it can also be used to generate generalized Asmuth-Bloom
sequences of integers.

As an alternative method to use Asmuth-Bloom SSS for
general access structures, we propose a scheme based on secret
splitting which uses Asmuth-Bloom SSS for the split parts.
We also show how function sharing can be realized using this
method and propose an RSA signature scheme for general
access structures as an example.

The rest of the paper is organized as follows: In Section II,
general and multipartite access structures are described. In
Section III, Asmuth-Bloom SSS and some of its properties are
given in detail. Section IV describes the method of Galibus and
Matveev, and our modified version. In Section V, the splitting-
based secret sharing scheme is proposed and an example
function sharing scheme is described. Section VI concludes
the paper.

II. GENERAL ACCESS STRUCTURES

The access structure of a secret sharing scheme is the set
of all groups which are allowed to reconstruct the secret. We
will denote the access structure of a secret sharing scheme
with Γ. The elements of the access structure are referred to as
authorized groups (sets) and the rest are called unauthorized
groups (sets). The set of all unauthorized groups is called the
adversary structure. The adversary structure will be denoted
by Γ. As an example, for a (t, n) threshold access structure,

Γ = {A ∈ 2P : |A| ≥ t},
Γ = {A ∈ 2P : |A| < t},

where 2P is the power set of the user set P = {1, 2, . . . , n}.
Ito, Saito, and Nishizeki [10] showed that for every access

structure, there is a secret sharing scheme. As they mentioned,
it is reasonable to assume that, if a group can recover the se-
cret, so can a larger group containing that group. Furthermore,
if a group cannot recover the secret, neither can a smaller

SECRET SHARING FOR GENERAL ACCESS STRUCTURES 2

group contained by that group. Hence, for an access structure
Γ,

(A ∈ Γ) ∧ (A ⊆ B)⇒ B ∈ Γ, (1)

(A ∈ Γ) ∧ (B ⊆ A)⇒ B ∈ Γ. (2)

An access structure is called monotone if it satisfies (1) and (2).
The monotonicity of an access structure helps us to make its
representation more compact. From now on, we assume that Γ
only contains the minimal allowed groups which can recover
the secret d. Similarly, Γ only contains maximal adversarial
groups which cannot recover d. E.g., for a (t, n) access
structure,

Γ = {A ∈ 2P : |A| = t},
Γ = {A ∈ 2P : |A| = t− 1}.

We refer the reader to [2] for a detailed discussion on
monotone access structures.

Let P , the user set, be partitioned into k ≥ 2 disjoint sets
P1,P2, . . . ,Pk. Each set Pi has ni users where n =

∑k
i=1 ni.

An access structure is called multipartite if there exists a
partition such that the users in each set Pi play the same
role. Let σ be a random permutation of the numbers 1 to
n. Formally, we say that an access structure Γ is k-partite if
σ(Γ) = Γ for any permutation σ of P satisfying σ(Pi) = Pi
for 1 ≤ i ≤ k. Note that any access structure defined on a
set of n users is trivially n-partite, because we can always
take P1 = {1}, . . . ,Pn = {n}. But, we usually want to
consider the minimum possible number of classes. For a
detailed discussion on multipartite access structures, the reader
may consult [7].

A k-partite access structure can be represented by a set of k-
tuple vectors, each vector denoting an authorized combination,
and the ith entry in a vector denoting the required number
of participants from Pi in that authorized combination. As an
example, Γ = {(3, 4), (4, 2)} means that a group is authorized
if it contains at least 3 users from P1 and 4 from P2, or if it
contains at least 4 users from P1 and 2 from P2. If we assume
that there are 5 users in each part, the corresponding adversary
structure for Γ is Γ = {(2, 5), (5, 1), (3, 3)}.

Note that due to monotonicity, Γ and Γ contain only
minimal and maximal vectors, respectively. I.e., if v =
(v1, . . . , vk) ∈ Γ then a vector v′ = (v′1, . . . , v

′
k) such that

v′i ≥ vi for 1 ≤ i ≤ k, is not in Γ. For example, for the
above access structure, the vector v′ = (4, 4) corresponds to
an authorized group but is not in Γ since v = (3, 4), a subset
is already in.

III. ASMUTH-BLOOM SECRET SHARING SCHEME

The Asmuth-Bloom SSS [1] is based on the CRT and uses
a public sequence of coprime integers m0 < m1 < . . . < mn

such that
t∏
i=1

mi > m0

t−1∏
i=1

mn−i+1. (3)

Such a sequence is called a (t, n) Asmuth-Bloom sequence.
Let M =

∏t
i=1mi. The secret sharing scheme works as

follows:

• The secret d is chosen randomly from Zm0 .
• y is computed as y = d + Am0, where A is a random

positive integer such that y < M .
• The secret shares yi are computed as yi = y mod mi for

all 1 ≤ i ≤ n.
• Given t distinct shares yi1 , . . . , yit , the secret d can

be obtained as d = y mod m0, where y is the unique
solution modulo M of the system

y ≡ yi1 (mod mi1)
...

y ≡ yit (mod mit).

Asmuth and Bloom proposed an iterative process to solve
the above system of congruences [1]. Here, we use a non-
iterative and direct method given in [4]. This method is more
suitable for function sharing in the sense that it does not re-
quire interaction between parties and has an additive structure
which is convenient for function sharing [11]. Suppose S is a
coalition of t users gathered to construct the secret d.

1) Let MS\i denote
∏
j∈S,j 6=imj and M

′

S,i be the multi-
plicative inverse of MS\i in Zmi , i.e.,

MS\iM
′

S,i ≡ 1 (mod mi).

Then, every user i computes

yi = diMS\iM
′

S,i mod MS .

2) y is computed as

y =
∑
i∈S

ui mod MS .

3) The secret d is computed as

d = y mod m0.

A very similar secret sharing scheme is the Mignotte SSS
[12]. This scheme also uses a special sequence of integers
called Mignotte sequences. A (t, n) Mignotte sequence is a
sequence of pairwise coprime integers m1 < . . . < mn such
that

t∏
i=1

mi >

t−1∏
i=1

mn−i+1.

Obviously if m0,m1, . . . ,mn is a (t, n) Asmuth-Bloom se-
quence, then m1, . . . ,mn is a (t, n) Mignotte sequence.

Note that the numbers in Asmuth-Bloom and Mignotte se-
quences are selected as pairwise coprime. However, Iftene [8],
[9] showed that this is not necessary and generalized these
sequences. Here we describe only the generalized Asmuth-
Bloom sequences; the generalization of Mignotte sequences is
similar.

Definition 1. Let t and n be integers such that 1 ≤ t ≤ n
and P = {1, 2, . . . , n}. Let Sj be the set of all subsets of P
of cardinality j. The sequence of integers m0,m1, . . . ,mn is
a (t, n) generalized Asmuth-Bloom sequence if it satisfies

m0

(
max
S∈St−1

(lcm(mi, i ∈ S))

)
< min
S∈St

(lcm(mi, i ∈ S))

where lcm denotes the least common multiple of its inputs.

SECRET SHARING FOR GENERAL ACCESS STRUCTURES 3

We conclude this section with an important property of
(dn/2e, n) Asmuth-Bloom sequences. We will use this prop-
erty in Section V while proposing a SSS based on secret
splitting.

Lemma 1. An (dn/2e, n) Asmuth-Bloom sequence is a (k, n)
Asmuth-Bloom sequence for all k such that 1 ≤ k ≤ n.

Proof: Let t = dn/2e.
Let 1 ≤ k < t. Rewriting (3) as

k∏
i=1

mi

t∏
i=k+1

mi > m0

k−1∏
i=1

mn−i+1

t∏
i=k+1

mn−i+2

and observing mi ≤ mn−i+2 for k + 1 ≤ i ≤ t,
k∏
i=1

mi > m0

k−1∏
i=1

mn−i+1 (4)

follows.
Now let n ≥ k > t. Since (3) is satisfied and mi ≥ mn−i+2

for t+ 1 ≤ i ≤ k,
t∏
i=1

mi

k∏
i=t+1

mi > m0

t−1∏
i=1

mn−i+1

k∏
i=t+1

mn−i+2

and hence, (4) holds again.

IV. METHOD OF GALIBUS ET AL.

Although Asmuth-Bloom and Mignotte SSSs are proposed
for integers, they can also be used with polynomial rings. The
secret sharing and reconstruction processes are the same as
the original ones except the secret d, the moduli mi, and
the shares di are polynomials. Existence and generation of
Asmuth-Bloom and Mignotte sequences for the polynomial
case was studied by Galibus et al. [5], [6]. They proved that
for polynomials, any access structure can be realized by using
Mignotte SSS and proposed an algorithm to produce a gener-
alized Mignotte sequence for an arbitrary access structure [5].
Let mi(x) be the polynomial of user i for all 1 ≤ i ≤ n and
Γ be the desired access structure. Algorithm 1 describes the
algorithm of Galibus and Matveev [5].

Algorithm 1 Method of Galibus and Matveev

1: for all maximal unauthorized subsets A ∈ Γ do
2: M = minC∈Γ(deg(lcm(pi(x), i ∈ C)))
3: if deg(lcm(mi(x), i ∈ A)) ≥M then
4: Find an irreducible monic polynomial p(x) such that

deg(p(x)) is minimum and

deg(lcm(mi(x), i ∈ A)) < deg(lcm(pi(x) : i ∈ C))

for all C ∈ Γ where

pi(x) =

{
p(x)mi(x) if i /∈ A
mi(x) if i ∈ A.

5: for all i /∈ A do
6: mi(x) = pi(x)

Initially each polynomial mi(x) is set to 1. Then, at each
iteration of the Algorithm 1, a maximal unauthorized subset
A ∈ Γ is processed. If A is at least as powerful as an

authorized subset C ∈ Γ, which is not supposed to happen,
the polynomials mi(x) of each user i not belonging to A
are multiplied by some irreducible monic p(x) ∈ GF (q)[x],
where GF (q)[x] denotes the polynomial ring and GF (q) is the
Galois field of prime order q. The polynomial p(x) is chosen
such that after all multiplications

deg(lcm(mi(x), i ∈ A)) < deg(lcm(pi(x), i ∈ C)), (5)

is satisfied for all C ∈ Γ. As Galibus et al. show, (5) holds true
when some other maximal unauthorized subset A′ is chosen
and the same operation is performed with another p′(x) 6=
p(x) at a subsequent iteration of the algorithm. Thus, after
repeating the operation for all maximal unauthorized subsets, a
Mignotte sequence for the given access structure Γ is obtained.

Our modifications to Algorithm 1 are as follows: We first
choose m0, a random prime number of specified bit length, at
the beginning. Then at each step of the algorithm,

m0 lcm(mi, i ∈ A) < min
C∈Γ

(lcm(mi, i ∈ C)), (6)

is checked for the current unauthorized subset A ∈ Γ and for
all C ∈ Γ. If the condition is satisfied, we do not update the
moduli mi, 1 ≤ i ≤ n. But if the condition is not satisfied,
first, a prime number p is chosen such that

m0 lcm(mi, i ∈ A)) < lcm(pi, i ∈ C)

for all C ∈ Γ where pi = pmi if i /∈ A, and pi = mi,
otherwise. Second, all moduli not belonging to users from A
are multiplied with p, i.e., mi is set to pi for i /∈ A. After this
operation is repeated for every maximal unauthorized subset,
a generalized Asmuth-Bloom sequence m0,m1, . . . ,mn is
obtained. The modified version of the algorithm for integers
is given in Algorithm 2.

Algorithm 2 Modified GM algorithm for integers
1: Generate a prime m0 of specified bit length
2: for all maximal unauthorized subset A ∈ Γ do
3: M = minC∈Γ(lcm(mi, i ∈ C))
4: if m0 lcm(mi, i ∈ A) ≥M then
5: Find a prime p such that, |p|, the bit length of p is

minimum and

m0 lcm(mi, i ∈ A) < lcm(pi, i ∈ C)

for all C ∈ Γ where

pi =

{
pmi if i /∈ A
mi if i ∈ A

6: for all i /∈ A do
7: mi = pi

Algorithm 2 generates a generalized Asmuth-Bloom se-
quence for an arbitrary access structure. Nevertheless, our
experiments indicate that it is not practical since the generated
moduli in the sequence are too large. Table I shows the
average and maximum bit lengths of the generalized Asmuth-
Bloom sequences which are generated by Algorithm 2 for
three different access structures and for m0 of length 32, 64,

SECRET SHARING FOR GENERAL ACCESS STRUCTURES 4

Bits A = {(2 3)} A = {(2 3),(3 2)} A = {(2 3)}
s = (4 4) s = (4 4) s = (5 5)

32 Max : 652 Max : 7162 Max : 1489
Avg : 327 Avg : 5612 Avg : 726

64 Max : 1324 Max : 14554 Max : 3025
Avg : 663 Avg : 11404 Avg : 1475

128 Max : 2668 Max : 29338 Max : 6097
Avg : 1336 Avg : 22988 Avg : 2973

256 Max : 5356 Max : 58906 Max : 12241
Avg: 2679 Avg: 46156 Avg: 5968

512 Max : 10732 Max : 56722 Max : 24529
Avg: 5367 Avg: 92492 Avg: 11958

TABLE I
MAXIMUM AND AVERAGE BIT LENGTHS OF THE GENERALIZED

ASMUTH-BLOOM SEQUENCES GENERATED BY THE MODIFIED GM
ALGORITHM.

128, 256, and 512 bits. The first row of the table shows the
2-partite access structures used for the experiments. Note that
Algorithm 2 is deterministic and the average and maximum
values are obtained by running the algorithm just once, not
from multiple runs. As Table I shows, the maximum and
average bit lengths of the moduli indicate that Algorithm 2 is
not of practical value. The results when the number of parts is
set to three are worse as the required number of multiplications
increase significantly.

V. A SSS BASED ON SPLITTING

To use Asmuth-Bloom (or Mignotte) SSS for general access
structures, here, we propose a different method using the cor-
responding multipartite access structures. Unlike Algorithm 2,
the modified method of Galibus et al. for integer Asmuth-
Bloom SSS, the proposed method generates more than one
sequence.

The idea of the proposed method is simple: First, we find the
smallest k value such that the access structure Γ is k-partite.
We then partition the user set into k parts where each part i
contains ni users. Second, to share a secret d, for each vector
v = (v1, v2, . . . , vk) ∈ Γ, we generate dv,1, dv,2, . . . , dv,k ∈
Zm0 such that

k∑
i=1

dv,i ≡ d mod m0. (7)

We then share dv,i, i ∈ {1, 2, . . . , k}, between the users in
part i by using a (vi, ni) Asmuth-Bloom SSS. Hence, if there
are r vectors in Γ each user ends up with r shares. Note that
to share a dv,i, we need a (vi, ni) Asmuth-Bloom sequence.
Although the vi value is different for each vector v, due to
Lemma 1, it suffices to generate one Asmuth-Bloom sequence
for each part. Moreover, if there are parts with the same
number of users, the same Asmuth-Bloom sequence can be
reused. In the extreme case where all parts have the same
size, just one Asmuth-Bloom sequence is generated and used
in all parts. Algorithm 3 describes the process in detail.

As Algorithm 3 shows, for each part, we generate an
Asmuth-Bloom sequence with common m0. More specif-
ically, for part i we generate an (dni/2e, ni) Asmuth-
Bloom sequence. Normally, for each part i and vector v =
(v1, v2, . . . , vk) ∈ Γ, we need to generate a different (vi, ni)
Asmuth-Bloom sequence. However, as Lemma 1 shows,

Algorithm 3 Splitting-based SSS for general access structures.
1: for all i, 1 ≤ i ≤ k do
2: t = dni/2e
3: generate an Asmuth-Bloom sequence

m0 < mj1 < mj2 < . . . < mjni
such that∏t

l=1mjl > m0

∏t−1
l=1 mjni−l+1

4: for all vectors v = (v1, v2, . . . , vk) ∈ Γ do
5: generate dv,1, dv,2, . . . , dv,k such that

dv,1 + dv,2 + . . .+ dv,k ≡ d (mod m0)
6: for all i, 1 ≤ i ≤ k do
7: Mv,i =

∏vi
l=1mjl

8: let Av,i be a random positive integer such that
yv,i = dv,i +Av,im0 ≤Mv,i

9: for all l, 1 ≤ l ≤ ni do
10: compute, yv,jl , share of lth user of part i

yv,jl = yv,i mod mjl

an (dni/2e, ni) Asmuth-Bloom sequence is also a (k, ni)
Asmuth-Bloom sequence for all 1 ≤ k ≤ n. So, for a part
i, the (dni/2e, ni) sequence can be used for each different vi
hence, for each vector v.

On the other hand, for each vector v ∈ Γ, we have to find
a distinct set of dv,i, 1 ≤ i ≤ k, such that

∑k
i=1 dv,i ≡ d

(mod m0). Otherwise, i.e. if we use the same summation more
than once, unauthorized groups can reconstruct the secret d
by combining their shares given for different vectors in the
access structure. As an example consider an access structure
Γ = {(5, 3), (3, 5)} where the vector (4, 4) corresponds to
an unauthorized group. Having 4 users from each part, such
a group can find dv,2 from the shares of given for vector
v = (5, 3) and can find dv′,1 from the shares given for vector
v′ = (3, 5). If we use the same summation, i.e., dv,1 = dv′,1,
combining dv′,1 and dv,2 would yield the secret. Obviously,
this situation has to be avoided. Since we cannot use only one
summation for d, the information rate of the scheme is

secret size
max share size

=
1

r
,

where r is the number of vectors in Γ. Note that as Table I
shows, the information rate is far better than that of Algo-
rithm 2.

The proposed splitting-based SSS naturally suits to be used
with function sharing schemes. In the next subsection, we
show how RSA signatures can be computed when the secret
is shared using the proposed splitting-based scheme.

A. A Threshold RSA scheme with the Proposed SSS

In [11], Kaya and Selcuk investigated how threshold cryp-
tography can be conducted with the Asmuth-Bloom secret
sharing scheme and presented function sharing schemes for
RSA, ElGamal and Paillier cryptosystems. Here, we will
follow their approach for realizing RSA signature computation
using the proposed splitting-based SSS as the underlying
scheme.

When an authorized group come together to sign a message,
users from each part can compute their partial signatures as

SECRET SHARING FOR GENERAL ACCESS STRUCTURES 5

in [11]. Then partial signatures coming from each part is
multiplied to generate the incomplete signature. This product
is incomplete because the method for RSA signature compu-
tation in [11] first calculates an incorrect signature which is
then corrected by using a procedure that utilizes the public key.
Here, the required housekeeping is a little more complicated.
The computed partial signatures of each part will be incorrect.
It is not possible to correct these partial signatures at this step
since there is no information (i.e., no public keys or partial
public keys for a part) to be used for correction. However,
we can still use the correction procedure after the partial
signatures are combined. In the following, we give the steps
of RSA signature computation when the RSA private key d
is shared using the proposed splitting-based secret sharing
method.

• Setup: In the RSA setup phase, choose the RSA primes
p = 2p

′
+1 and q = 2q

′
+1 where p

′
and q

′
are also large

random primes. N = pq is computed and the public key e
and private key d are chosen from Z∗φ(N) where ed ≡ 1
(mod φ(N)). Use the above secret sharing scheme for
sharing d with m0 = φ(N) = 4p

′
q
′
. Note that each user

will receive r shares, which is the number of vectors in
the access structure Γ.

• Signing: Let w be the hashed message to be signed and
suppose the range of the hash function is Z∗N . Let Γ,
the access structure, be k-partite. Assume a coalition S,
containing ti users from the ith part for 1 ≤ i ≤ k,
wants to obtain the signature s = wd mod N . Let Si
denote the set of users in S from part i. For this coalition
to be authorized, there has to be at least one vector
v = (v1, v2, . . . , vk) in Γ such that vi ≤ ti for all
i ∈ {1, 2, . . . , k}. Without loss of generality, we assume
v = (t1, t2, . . . , tk). To sign the message, the users in
each Si compute the partial signature si by using their
shares yv,j for j ∈ Si, with respect to the same vector v.

– Generating partial results: Each user j ∈ Si com-
putes

uj = yv,jM
′

v,Si,jMv,Si\j mod Mv,Si

σj = wuj mod N,

where Mv,Si
is the value used in Algorithm 3 to

share dv,i, Mv,Si\j = Mv,Si
/mj , and M

′

v,Si,j
is the

inverse of it modulo mj .
– Combining partial results: The incomplete signature
s is obtained by first computing the partial signature
si for each part i, and combining, i.e., multiplying
the results. Hence, for each part i

si =
∏
j∈Si

σj mod N.

s =

k∏
i=1

si mod N.

– Correction: Let κv,i = w−Mv,Si be the corrector for
part i. The incomplete signature can be corrected by

trying (
s

k∏
i=1

κliv,i

)e
= se

k∏
i=1

(
κev,i
)li

?≡ w (mod N) (8)

for

0 ≤ l1 < t1,
...

0 ≤ lk < tk.

Then the signature is computed by

s = sκδ11 κ
δ2
2 . . . κδkk , (9)

where δ1, . . . , δk denote the values of l1, . . . , lk
that satisfy (8). For details of why this correction
procedure is needed and why it works, the reader
may consult [11].

• Verification: Verification is the same as the standard RSA
signature verification.

VI. CONCLUSION

In this paper, we investigated ways of using Asmuth-Bloom
SSS for general secret sharing. The main problem to devise
such a scheme is finding a suitable Asmuth-Bloom sequence
for the given access structure.

Galibus et al. [6] show that not all access structures can
be realized using sequences consisting of pairwise coprime
moduli. They call access structures that can be realized using
pairwise coprime moduli as elementary access structures. For
the secret sharing problem with general access structures, they
proposed an algorithm which works in the ring of polynomials.
Although a variant of this algorithm for the ring of integers,
which we call the modified GM algorithm, can produce gen-
eralized integer Asmuth-Bloom sequences, our experiments
showed that it produces very large moduli, seriously limiting
the algorithm’s practical value.

We proposed a splitting-based SSS for the same problem.
The proposed scheme compares favorably to the above men-
tioned modified GM algorithm in terms of the information
rate. Furthermore, function sharing schemes for general ac-
cess structures can easily be implemented with the proposed
scheme. We described a threshold RSA signature computation
using the proposed scheme as an example.

Obtaining more compact Asmuth-Bloom sequences and
hence improving the information rate of the proposed schemes
in the literature are the main problems for future research.

REFERENCES

[1] C. Asmuth and J. Bloom. A modular approach to key safeguarding.
IEEE Transactions on Information Theory, 29(2):208–210, 1983.

[2] J. C. Benaloh and J. Leichter. Generalized secret sharing and monotone
functions. In Proc. of CRYPTO ’88, volume 403 of LNCS, pages 27–35.
Springer-Verlag, 1990.

[3] G. Blakley. Safeguarding cryptographic keys. In Proc. of AFIPS
National Computer Conference, 1979.

SECRET SHARING FOR GENERAL ACCESS STRUCTURES 6

[4] C. Ding, D. Pei, and A. Salomaa. Chinese Remainder Theorem:
Applications in Computing, Coding, Cryptography. World Scientific,
1996.

[5] T. Galibus and G. Matveev. Generalized Mignotte’s sequences over
polynomial rings. Electronic Notes on Theoretical Computer Science,
186:43–48, 2007.

[6] T. Galibus, G. Matveev, and N. Shenets. Some structural and security
properties of the modular secret sharing. In Proc. of SYNASC’2008,
2008.

[7] J. Herranz and G. Saez. New results on multipartite access structures.
IEE Proceedings of Information Security, 153(4):153–162, 2006.

[8] S. Iftene. A generalization of Mignotte’s secret sharing scheme. In Proc.
of 6th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, pages 196–201. Mirton Publishing House, 2004.

[9] S. Iftene. Secret Sharing Schemes with Applications in Security Proto-
cols. PhD thesis, University Alexandru Ioan Cuza of Iaşi, Faculty of
Computer Science, 2007.

[10] M. Ito, A. Saito, and T. Nishizeki. Secret sharing scheme realizing
general access structure. In Proc. of GLOBECOM’87, pages 99–102.
IEEE Press, 1987.

[11] K. Kaya and A. A. Selçuk. Threshold cryptography based on Asmuth-
Bloom secret sharing. Information Sciences, 177(19):4148–4160, 2007.

[12] M. Mignotte. How to share a secret? In Proc. of the Workshop on
Cryptography, volume 149 of LNCS, pages 371–375. Springer-Verlag,
1983.

[13] A. Shamir. How to share a secret? Communications of the ACM,
22(11):612–613, 1979.

