
Sharing DSS by the Chinese Remainder

Theorem

Kamer Kaya∗,a, Ali Aydın Selçukb

a Ohio State University, Columbus, 43210, OH, USA
b Bilkent University, Ankara, 06800, Turkey

Abstract

In this paper, we propose a new threshold scheme for the Digital Signature
Standard (DSS) using Asmuth-Bloom secret sharing based on the Chinese
Remainder Theorem (CRT). To achieve the desired result, we first show
how to realize certain other threshold primitives using Asmuth-Bloom secret
sharing, such as joint random secret sharing, joint exponential random secret
sharing, and joint exponential inverse random secret sharing. We prove the
security of our scheme against a static adversary. To the best of our knowl-
edge, this is the first provably secure threshold DSS scheme based on CRT.

Key words: Asmuth-Bloom secret sharing, threshold cryptography,
function sharing, DSS

1. Introduction

Threshold cryptography deals with the problem of sharing a highly sensi-
tive secret among a group of n users so that the secret can be reconstructed
only when a sufficient number t of them come together. This problem is
known as the secret sharing problem and several secret sharing schemes (SSS)
have been proposed in the literature (e.g., [1, 3, 16]).

Threshold cryptography also deals with the function sharing problem. A
function sharing scheme (FSS) requires distributing the function’s computa-
tion according to the underlying SSS such that each part of the computation

∗Corresponding Author: Tel: (614) 366-2476, Fax: (614) 688-6600
Email addresses: kamer@bmi.osu.edu (Kamer Kaya), selcuk@cs.bilkent.edu.tr

(Ali Aydın Selçuk)

Preprint submitted to J. Computational and Applied Mathematics May 17, 2013

can be carried out by a different user and then the partial results can be com-
bined to yield the function’s value without disclosing individual secrets. The
FSSes in the literature, e.g., [4, 5, 15, 17], proposed for various cryptosys-
tems, traditionally used Shamir’s SSS [16] until a recent work by Kaya and
Selcuk [12] showed how to use the Asmuth-Bloom SSS [1] for function shar-
ing. In that paper [12], they propose threshold RSA signature/encryption,
ElGamal encryption, and Paillier encryption schemes by using the Asmuth-
Bloom SSS.

The Digital Signature Standard (DSS) is the current US government stan-
dard for digital signatures. Sharing DSS is an interesting problem and a
solution was given by Gennaro et al. [9], based on Shamir’s SSS.

In this paper, we propose a new threshold scheme for DSS with the
Asmuth-Bloom SSS. We follow the approach of Gennaro et al. [9] and show
how similar primitives can be achieved based on Asmuth-Bloom secret shar-
ing. Obtaining these primitives with Asmuth-Bloom secret sharing turns out
to be a challenging task. We use the approximate-and-correct approach [12]
to compute the correct function output values from the partial results. The
proposed scheme is provably secure against up to t− 1 corrupted users, and
2t + 2 users are required to generate a DSS signature. To the best of our
knowledge, this is the first provably secure threshold DSS scheme based on
the Chinese Remainder Theorem (CRT).

2. Digital Signature Standard

DSS [7] is based on the ElGamal signature scheme [6], where the ElGamal
signature is slightly modified to obtain fixed-length outputs even though the
size of the prime modulus p may increase. The DSS signature scheme can be
summarized as follows:

∙ Key Generation Phase: Let p and q be large prime numbers, where
q∣(p−1) and let g ∈ ℤ∗p be an element of order q. The private key � ∈R
ℤ∗q is chosen randomly and the public key � = g� mod p is computed.

∙ Signing Phase: The signer first chooses a random ephemeral key k ∈R
ℤ∗q and then computes the signature (r, s), where

r = (gk
−1

mod p) mod q,

s = k(w + �r) mod q

for a hashed message w ∈ ℤq.

2

∙ Verification Phase: The signature (r, s) is verified by checking r
?
=

(gws
−1
�rs

−1
mod p) mod q, where s−1 is computed in ℤ∗q.

3. The Asmuth-Bloom Secret Sharing Scheme

The Asmuth-Bloom SSS [1] shares a secret d among n parties such that
any t users can reconstruct the secret by the CRT. The scheme below is a
slightly modified version by Kaya and Selcuk [12] in order to obtain better
security properties.

∙ Dealing Phase: To share a secret d among a group of n users, the dealer
does the following:

1. A set of relatively prime integers m0 < m1 < . . . < mn are chosen,
where m0 is a prime and

t∏
i=1

mi > m0
2

t−1∏
i=1

mn−i+1. (1)

2. Let M denote
∏t

i=1 mi. The dealer computes y = d+Am0, where
A is a positive integer generated randomly such that 0 ≤ y < M .

3. The share of the ith user, 1 ≤ i ≤ n, is yi = y mod mi.

∙ Combining Phase: Let S be a coalition of t users gathered to construct
the secret. Let MS denote

∏
i∈Smi.

1. Let MS∖{i} denote
∏

j∈S,j ∕=imj and M ′
S,i be the multiplicative in-

verse of MS∖{i} in ℤmi
, i.e., MS∖{i}M

′
S,i ≡ 1 (mod mi). First, the

ith user computes ui = yiM
′
S,iMS∖{i} mod MS.

2. The users compute y =
(∑

i∈S ui
)

mod MS and then obtain the
secret d by computing d = y mod m0.

4. The Modified Asmuth-Bloom SSS

In the literature, the sequence, m0 < m1 < . . . < mn, satisfying (1),
is called a (t, n) Asmuth-Bloom sequence. An interesting property of these
sequences, which will be used in our scheme, is given in Lemma 1.

Lemma 1. An (⌈n/2⌉, n) Asmuth-Bloom sequence is a (k, n) Asmuth-Bloom
sequence for all k such that 1 ≤ k ≤ n.

3

To adapt the original scheme for the threshold DSS, first, we use such
an (⌈n/2⌉, n) sequence. Note that this sequence can be used for any (k, n)
Asmuth-Bloom SSS where M =

∏k
i=1mi. Second, we multiply the right side

of (1) by n and obtain the inequality

t∏
i=1

mi > nm0
2

t−1∏
i=1

mn−i+1. (2)

Lastly, we change the definition of M to

M =

⌊∏t
i=1mi

n

⌋
. (3)

Theorem 1 (Kaya and Selcuk [13]). The modified Asmuth-Bloom scheme
is perfect. I.e., an adversary with t − 1 or fewer shares has Pr(d = d′) =
Pr(d = d′′) for any d′, d′′ ∈ ℤm0.

4.1. Arithmetic Properties of the Modified Asmuth-Bloom SSS

Suppose several secrets are shared with common parameters t, n, and
mi, 1 ≤ i ≤ n, chosen according to (2). Shareholders can use the following
properties to obtain new shares for the sum and product of the shared secrets:

Proposition 1. Let d1, d2, ⋅ ⋅ ⋅ , dn be secrets shared by the Asmuth-Bloom
SSS with common parameters t, n, and moduli mi for 1 ≤ i ≤ n. Let yij be
the share of the ith user for secret dj. Then, for D = (

∑n
i=1 di) mod m0 and

Yi = (
∑n

j=1 yij) mod mi, we have D
t← (Y1, Y2, ⋅ ⋅ ⋅ , Yn), i.e., by using t of

Y1, Y2, ⋅ ⋅ ⋅ , Yn, the secret D can be constructed.

Proposition 2. Let d1, d2 be secrets shared by the Asmuth-Bloom SSS with
common parameters t, n and moduli mi for 1 ≤ i ≤ n. Let yij be the
share of the ith user for secret dj. Then, for D = d1d2 mod m0 and Yi =

yi1yi2 mod mi, we have D
2t← (Y1, Y2, ⋅ ⋅ ⋅ , Yn).

5. Sharing DSS

To obtain a threshold DSS scheme, first the dealer generates the private
key � and shares it among the users by a (t, n) Asmuth-Bloom secret sharing
scheme with m0 = q. Then a signing coalition S can sign a message without

4

requiring a trusted party. Note that anyone can obtain the secret key �
and forge signatures if he knows k for a valid signature (r, s). Hence, r =
(gk

−1
mod p) mod q must be computed in a way that no one obtains k.

Our approach for this problem can be summarized as follows: First the
users in the signing coalition S will share a random k value by using the
joint random secret sharing primitive, Joint-RSS, in which each user of S
contributes to the sharing of k. Note that this procedure only generates the
shares for k, not k itself. Next, the Joint-Exp-Inverse primitive is called
to compute r = (gk

−1
mod p) mod q. Last, the signature will be obtained by

using r and the shares of k and �.
Below, S denotes the signing coalition of size 2t + 2. Without loss of

generality, we assume S = {1, 2, . . . , 2t + 2}. We will first describe the
primitive tools we used in the proposed CRT-based threshold DSS scheme.
Note that for each primitive, S is the set of participants for that primitive.

5.1. Joint Random Secret Sharing

In Joint-RSS, each user in the signing coalition S contributes to the
share generation process and obtains a share for the resulting random secret
as described below. A verifiable version of this scheme can be found in [13].

1. Each user j ∈ S chooses a random secret dj ∈ ℤm0 and shares it as

dj
t← (y1j, y2j, ⋅ ⋅ ⋅ , y(2t+2)j), where yij is the share of the ith user.

2. The ith user computes Yi =
(∑2t+2

j=1 yij

)
mod mi. By Proposition 1,

D
t← (Y1, Y2, . . . , Y2t+2), i.e., D can be obtained by using t of Y1, Y2, . . . , Y2t+2.

Since the Asmuth-Bloom SSS is perfect, D is t-out-of-(2t + 2) secure
where D =

(∑2t+2
i=1 di

)
mod m0, i.e., t − 1 users cannot obtain any in-

formation on D.

5.2. Joint Zero Sharing

In a Joint-ZS scheme, each user in the signing coalition S contributes
to the zero sharing process and obtains a share for the resulting zero, as
described below:

1. Each user j ∈ S shares 0
2t← (y1j, y2j, ⋅ ⋅ ⋅ , y(2t+2)j) by using a (2t, n)

Asmuth-Bloom SSS, where yij = Ajm0 mod mi is the share of the ith
user for some Ajm0 < M . As described in Section 4, due to Lemma 1,
the sequence m0 < m1 < . . . < mn can be used by changing M =⌊∏2t

i=1mi

n

⌋
instead of (3).

5

2. The ith user computes Yi =
(∑2t+2

j=1 yij

)
mod mi. By Proposition 1,

0
2t← (Y1, Y2, . . . , Y2t+2).

5.3. Computing gd mod p

For threshold DSS, we need to share and compute gd mod p for a jointly
shared secret d ∈ ℤq. The scheme Joint-Exp-RSS described below, con-
structs an intermediate value for Fd = gd mod p. This intermediate value
will later be corrected through a separate correction process.

1. To compute Fd = gd mod p for a jointly shared secret d, S uses Joint-

RSS to generate and share d as d
t← (y1, y2, . . . , y2t+2), with m0 = q.

2. Each user i ∈ S computes

ui,d = (yiMS∖{i}M
′
S,i) mod MS,

where M ′
S,i = MS∖{i}

−1 mod mi, and broadcasts fi,d = gui,d mod p.

3. The intermediate value Fd′ of gd mod p is computed as
∏

i∈S fi,d mod p.

Observe that d = ((
∑

i∈S ui) mod MS) mod q, whereas this construction

process computes Fd′ = gd
′
mod p for d′ =

∑
i∈S ui mod q. Since there are

2t+ 2 users in S and ui < MS for all i, d = d′− �dMS mod q for some integer
0 ≤ �d ≤ 2t+ 1.

5.4. Computing gk
−1

mod p

In DSS, we need to compute r = gk
−1

mod p in such a way that neither
k nor k−1 is known by any user:

1. S uses Joint-RSS to jointly share random secrets k
t← (k1, k2, . . . , k2t+2),

a
t← (a1, a2, . . . , a2t+2), and uses Joint-ZS to distribute shares for zero,

i.e., 0
2t← (z1, z2, . . . , z2t+2).

2. S constructs v = (ak) mod m0 from shares vi = (aiki + zi) mod mi,

i ∈ S. Note that v
2t+1← (v1, v2, . . . , v2t+2), as described in Section 4.1.

3. S uses Joint-Exp-RSS to obtain

Fa′ =
∏
i∈S

fi,a =
∏
i∈S

gui,a ≡ ga
′ ≡ ga+�aMS mod p and

Fk′ =
∏
i∈S

fi,k =
∏
i∈S

gui,k ≡ gk
′ ≡ gk+�kMS mod p.

6

S also computes

Fa′k′ =
∏
i∈S

fi,ak =
∏
i∈S

Fa′
ui,k ≡ ga

′k′ ≡ g(a+�aMS)(k+�kMS) mod p

≡ gvFa′
�kMSFk′

�aMSg−�a�kM
2
S mod p.

4. S checks the following equality

Fa′k′
?
= gvFa′

jkMSFk′
jaMSg−jajkM

2
S mod p (4)

for all 0 ≤ ja, jk ≤ 2t+1 and finds the (ja = �a, jk = �k) pair that satis-
fies this equality. Once �a is found, Fa = ga mod p = Fa′g

−�aMS mod p
can be computed.

5. The signing coalition S computes gk
−1

mod p = Fa
(v−1) mod p.

Step 4 of Joint-Exp-Inverse computes Fa = ga mod p from the inter-
mediate value Fa′ . Note that the (ja, jk) pair, 0 ≤ ja, jk ≤ 2t + 1, found
for (4) is unique with overwhelming probability, given that (2t+ 2)2 ≪ q.

5.5. Threshold DSS Scheme

The phases of the proposed threshold DSS scheme are described in Fig. 1:

∙ Key Generation Phase: Let � ∈R ℤ∗q be the private signature key. The dealer

sets m0 = q and shares �
t← (�1, �2, . . . , �n).

∙ Signing Phase: To sign a hashed message w ∈ ℤq, the signing coalition S of size
2t+ 1 first computes

r = (gk
−1

mod p) mod q

by, Joint-Exp-Inverse described in Section 5.4. To compute s = k(w +
r�) mod q, each user i ∈ S computes si = (ki(w + r�i) + zi) mod mi and

broadcasts it where the shares 0
2t+1← (z1, z2, . . . , z2t+2) are obtained by using

the primitive Joint-ZS. Then the signature s is computed by using the recon-
struction process for the Asmuth-Bloom SSS with 2t+ 2 shares.

∙ Verification Phase is the same as the standard DSS verification.

Figure 1: CRT-based threshold DSS signature.

Let Y (�), Y (k), and Y (z) be the smallest integers, such that

� = Y (�) mod m0, k = Y (k) mod m0, 0 = Y (z) mod m0,

�i = Y (�) mod mi, ki = Y (k) mod mi and zi = Y (z) mod mi, for i ∈ S.

7

Since � and k are jointly shared with threshold t, due to Proposition 1, they
can be constructed with t shares. Hence, both Y (�) and Y (k) are less than∏t

i=1 mi. On the other hand, Y (z) requires 2t+ 1 of the shares z1, . . . , z2t+2,
hence, Y (z) <

∏2t+1
i=1 mi. Since w, r < m0, we have

Y (k)
(
w + rY (�)

)
+ Y (z) < m0

t∏
i=1

mi

(
t∏
i=1

mi + 1

)
+

2t+1∏
i=1

mi,

which can be computed by a coalition of size 2t + 2 by Proposition 2 and

Section 4.1. Hence, s
2t+2← (s1, s2, . . . , sn), i.e., s can be computed by 2t + 2

partial signatures si, i ∈ S.

6. Security Analysis

Here we will prove that the proposed threshold DSS signature scheme is
secure (i.e., existentially non-forgeable against an adaptive chosen message
attack), provided that the DSS signatures are unforgeable. Throughout the
paper, we assume a static adversary model where the adversary controls
exactly t− 1 users and chooses them at the beginning of the attack. In this
model, the adversary obtains all secret information of the corrupted users
and the public parameters of the cryptosystem. She can control the actions
of the corrupted users, ask for partial signatures of the messages of her choice,
but she is the static in the sense that she cannot corrupt another user in the
course of an attack.

For the proof, we will follow the standard methodology for threshold sig-
natures [9, 17]: To reduce the problem of breaking the DSS signature scheme
to breaking the proposed threshold DSS scheme, we will simulate the pro-
tocol with no information on the secret where the output of the simulator
is indistinguishable from an actual run of the protocol from the adversary’s
point of view. Therefore, an attacker on the threshold DSS will imply an at-
tacker on DSS itself through the simulator. The input to the simulator is the
hashed message w, its signature (r, s), the public key �, and the secret shares
of the corrupted users, i.e., �i ∈ SB, where SB denotes the corrupted (bad)
user set. Let SG be the set of good users in S and let r∗ = gws

−1
�rs

−1
mod p.

The simulator is given in Fig. 2.
To prove that the outcome of the simulator is indistinguishable, we first

need to state the following assumption:

8

1. By simulating the good users in SG, with the Joint-RSS procedure, the simulator shares
random values for each user in SG. It also obtains the good users’ shares from the corrupted
users in SB . Note that all of these values are known by the simulator because ∣SG∣ ≥ t, which

is the threshold. Let a, k ∈ ℤq be the shared values in this step, i.e., k
t← (k1, k2, . . . , k2t+2)

and a
t← (a1, a2, . . . , a2t+2). After that, 0 is shared by using the procedure Joint-ZS, i.e., 0

2t←
(z1, z2, . . . , z2t+2). For the rest of the simulation, let �a =

⌊∑
i∈S ui,a

MS

⌋
and �k =

⌊∑
i∈S ui,k

MS

⌋
.

2. By using the second step of Joint-Exp-Inverse , v = ak is computed. Let Fa′ = r∗
v

g�aMS .

The simulator uses ai values to compute fi,a = gaiMS∖iM
′
S,i mod MS mod p for all i ∈ SG but

one. For the last user, fi,a is selected such that

∏
i∈SG

fi,a ≡ Fa′
(∏
i∈SB

fi,a

)−1
mod p. (5)

These fi,a values are then broadcast.
3. By using the construction phase of Joint-Exp-RSS, Fk′ =

∏
i∈S fi,k mod p is computed. Let

Fa′k′ = F ′a
�kMS

Fk′
�aMSg−�a�kM

2
Sgv mod p.

The simulator uses ki values to compute fi,ak = Fa′
kiMS∖iM

′
S,i mod MS

mod p for all i ∈ SG but

one. For the last user, fi,ak is selected such that

∏
i∈SG

fi,ak ≡ Fa′k′
(∏
i∈SB

fi,ak

)−1
mod p.

These fi,ak values are then broadcasted and after that the correction phase is completed.

4. Let si = (ki (w + �ir) + zi) mod q for i ∈ SB , where zis are obtained from the execution of a
Joint-ZS with threshold 2t+ 1. The simulator chooses a random integer Us smaller than

m0

t∏
i=1

mi

(
t∏
i=1

mi + 1

)
+

2t+1∏
i=1

mi,

such that Us ≡ si mod mi for i ∈ SB and Us ≡ s mod m0. Then it computes si = Us mod mi

for i ∈ SG and broadcasts them. After these steps, the signature (r, s) is computed.

Figure 2: Simulator for the threshold DSS protocol.

Assumption 1 (Gennaro et al. [8]). Let G be the subgroup generated by
g. Choose u, v at random, uniformly distributed and independently, in ℤq.
The following probability distributions on G × G, (gu mod p, gv mod p) and

9

(
gu mod p, gu

−1
mod p

)
, are computationally indistinguishable.

In a related work, Bao et al. [2] prove that if the Computational Diffie-
Hellman (CDH) assumption holds, there is no polynomial-time algorithm
that outputs gx

−1
on inputs g and gx with non-negligible probability. We use

this assumption in Lemma 2 to prove the security of the overall scheme:

Lemma 2. The outcome of the simulator in Fig.2 is indistinguishable from
the CRT-based threshold DSS scheme from a static adversary’s point of view
under Assumption 1 and the DDH assumption.

Proof. 1. As shown by Theorem 1, the modified SSS is perfect, i.e., the
probabilities Pr(d = k) and Pr(d = k) are equal for k, k ∈ ℤm0 , where d
is the shared secret, k is the shared value in real protocol, and k is the
shared value in the simulation. The same argument is also true for a.

2. In the real protocol, the set of shares (v1, v2, . . . , v2t+2) is a valid sharing
for a uniformly distributed value v. In the simulation, (v1, v2, . . . , v2t+2)
also yields a uniformly distributed value v. Hence, the distribution of
the shares vi, i ∈ S, is identical to the distribution of vi, i ∈ S. Note
that, if the joint zero-sharing procedure is not used, i.e., if the shares
of v are not randomized, the secrecy of a and k is not preserved.
In the real protocol, Fa′ = ga+�aMS mod p, where a is random and �a
is another random value independent from a. The simulation com-
putes Fa′ = gk

−1v+�aMS mod p. Since v is uniformly random, k−1v is
also uniformly random. The simulator uses the exact �a value deter-
mined in Step 2 so its distribution is identical to that of �a. Hence, the
distribution of Fa′ and Fa′ values are identical.
In the simulation, ais are used to compute fi,a = gaiMS∖iM

′
S,i mod MS mod

p, and in computing of fi,a = gui,a , thanks to perfectness, the share ai
can be any integer from ℤq. Hence, the distributions of fi,as and fi,as
are indistinguishable for the users in S ∖{j}. However, for the last user
j of SG, the simulator chooses a specific fj,a to satisfy (5). We will show
that without fj,a, the rest of the fi,as for i ∈ S ∖ {j} yield a random
value in the group generated by g. Let S ′ = S ∖ {j}. Consider∑

i∈S′
ui,a =

∑
i∈S′

aiMS∖{i}M
′
S,i mod MS.

10

Since the threshold for a is t and ∣S ′∣ > t, the following equation is
satisfied:

a =

((∑
i∈S′

ui,a

)
mod MS′

)
mod q.

However, when we try to do the same construction in the exponent,∏
i∈S′

fi,a ≡ ga+ΔaMS′ mod p

for some Δa < ∣S ′∣ MS

MS′
= ∣S ′∣mj. Since Δa is an unknown, mj > m0

2 =

q2, and gcd (q,MS′) = 1, we have ga+ΔaMS′ uniformly random in the
group generated by g. Note that this is true for every S ′ ⊂ S, i.e.,
there is no correlation between fi,as for i ∈ S ′ when ui,as are computed
for a larger coalition S ⊃ S ′. Hence, the distributions of fi,a and fi,a
for i ∈ S are indistinguishable.
The same argument is also true for the distributions of fi,ak and fi,ak
for i ∈ S, which are used in the following step.

3. For the correction phase in the real protocol, the values fi,ak and fi,k use
the same value ui,k in the exponent, likewise, the ones in the simulator.
The correction equation used in the real protocol is

Fa′k′ = Fa′
�kMSFk′

�aMSg−�a�kM
2
Sgv mod p.

And, the simulator uses the value

Fa′k′ = Fa′
�kMS

Fk′
�aMSg−�a�kM

2
Sgv mod p,

where the distribution of each value on the right side is identical to that
of the corresponding value in the real protocol. Hence, the distribution
of Fa′k′ and Fa′k′ values are identical. The distributions of the outputs
of the correction processes, i.e., �a and �k, are also identical since the
simulator uses the actual �a and �k values.
Here we need to use the DDH assumption and Assumption 1. After
the correction, (Fa′ , Fk′ , Fa′k′) are revealed, where, in the real protocol
they are equal to (ga

′
, gk

′
, ga

′k′). The DDH assumption states that
the distributions of these two triplets are indistinguishable. Besides,
Fk′ = gk

′
and, once �k is found, gk can be computed. The users will

also know r = gk
−1

, and in the real protocol the pair (gk, gk
−1

) will be
(gk, gk

−1
). Assumption 1 says that the distributions of these two pairs

are also indistinguishable.

11

4. In the real protocol, the set of shares (s1, s2, . . . , s2t+2) is a valid sharing
for a uniformly distributed value s. In the simulation, (s1, s2, . . . , s2t+2)
also yields the same value. The computing process of si for i ∈ SG is
the same as the one in the real protocol. Hence, the distribution of the
shares si, i ∈ S, is identical to the distribution of si, i ∈ S. □

We conclude this section with a corollary of Theorem 1 and Lemma 2.

Corollary 1. Given that the standard DSS scheme is secure, the threshold
DSS signature scheme is also secure under the static adversary model.

7. Information Efficiency of the Proposed Scheme

An important criterion for the efficiency of a threshold scheme is the
information rate, i.e., the ratio of the secret size to the maximum share size.
In our scheme, the domain for the secret is ℤm0 and the domains for the shares
are ℤmi

for 1 ≤ i ≤ n. Let ∣m∣ denote the bit size of an integer m. Since mn

is the largest modulus, the maximum share size is ∣mn∣ and the information
rate of the scheme is ∣m0∣/∣mn∣. Note that, since m1, . . . ,mn are selected as
consecutive primes that satisfy (2), each mi must be greater than nm2

0.
The prime number theorem says that the density of primes less than x is

1/ lnx. Let m1 be the first prime after nm2
0. Considering that the density of

the primes around nm2
0 is 1/ ln(nm2

0),

mn ≈ nm2
0 + (n− 1) ln (nm2

0) < n(m2
0 + 2 lnm0 + lnn).

Therefore, the information rate of the scheme is

∣m0∣
∣n∣+ ∣m2

0 + 2 lnm0 + lnn∣
,

and considering m0 ≫ n, this number is close to 1/2.

8. Computation Efficiency of the Proposed Scheme

To evaluate the computation efficiency of the proposed scheme, we will
count the number of inversions and exponentiations involved: First note
that the Asmuth-Bloom SSS uses only multiplication, addition, and modular
reduction in the dealing phase, hence in the Joint-Rss protocol the users do

12

not use any inversion or exponentiation. The same is also true for the Joint-
Zs phase of the proposed protocol. To compute gd mod p for a shared secret
d, i.e., in the Joint-Exp-Rss protocol, each user in the coalition performs an
inversion to compute ui,d = (yiMS∖{i}M

′
S,i) mod MS and an exponentiation

to compute fi,d = gui,d mod p.
The proposed protocol uses Joint-Exp-Inverse to obtain r, which per-

forms three Joint-Exp-Rsses, and each user performs three exponentia-
tions with one common inversion. In addition, for equation (4) (step 4 in
Section 5.4), the coalition needs to perform four exponentiations and one
inversion (and O(t2) multiplications). In the final step, we need one more
inversion and exponentiation. Hence, in total, each user in the coalition per-
forms three exponentiations and one inversion; and the coalition needs to
perform two more inversions and five more exponentiations together.

An exact computational comparison with the Shamir-based threshold
DSS scheme [9] is hard to achieve since the characteristics of the arithmetic
operations are different. For example, the secret sharing phase in Shamir
SSS uses O(t) exponentiations as opposed to none in ours, but the expo-
nents are small, i.e., less than t. The cost of the Joint-Rss, Joint-Zs,
Joint-Exp-Rss protocols are roughly the same, except for these exponen-
tiations in Shamir SSS. The main additional cost of the new protocol is the
correction procedure (4). But, as it can be seen from the discussion above,
the marginal cost of this step does not dominate the overall computation
cost. Furthermore, (4) needs to be performed only once by the whole coali-
tion, and the candidate (ja, jk) pairs can be distributed among the users
in parallel, where the final signature is verified by each user independently.
Therefore, we can say that the computational cost of the proposed scheme is
comparable to that of [9], with the exact performance figures depending on
the details of the implementations.

9. Conclusion

In this paper, we investigated how the DSS signature function can be
shared using the Chinese Remainder Theorem. We proposed a threshold
DSS signature scheme based on Asmuth-Bloom secret sharing. The proposed
scheme is secure against an adversary who is allowed to corrupt t− 1 users,
and 2t + 2 users are required to generate a DSS signature. Although it is
slightly less efficient than the Shamir-based solution of Gennaro et al. [9], this
is rather normal considering the vast amount of literature on Shamir-based

13

FSSes. We believe that CRT-based FSSes will keep improving, but more
work is needed to have them as efficient as their Shamir-based counterparts.

References

[1] C. Asmuth and J. Bloom. A modular approach to key safeguarding. IEEE
Trans. Information Theory, 29(2):208–210, 1983.

[2] F. Bao, R. H. Deng, and H. Zhu. Variations of Diffie-Hellman assumption. In
ICICS 2003, volume 2836 of LNCS, pages 301–312.

[3] G. Blakley. Safeguarding cryptographic keys. In AFIPS National Computer
Conference, 1979.

[4] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In CRYPTO’89,
volume 435 of LNCS, pages 307–315. Springer-Verlag, 1990.

[5] Y. Desmedt and Y. Frankel. Shared generation of authenticators and signa-
tures. In CRYPTO’91, volume 576 of LNCS, pages 457–469.

[6] T. ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Trans. Information Theory, 31(4):469–472, 1985.

[7] National Institute for Standards and Technology. Digital signature standard
(DSS). Technical Report 169, August 30, 1991.

[8] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust Threshold DSS
Signatures. In EUROCRYPT 1996, volume 1070 of LNCS, pages 354–371.

[9] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust threshold DSS
signatures. Information and Computation, 164(1):54–84, 2001.

[10] S. Iftene, S. Ciobaca, and M. Grindei. Compartmented threshold RSA based
on the CRT. ePrint Archive, 2008/370.

[11] S. Iftene and M. Grindei. Weighted threshold RSA based on the CRT. In
SYNACS’2007, pages 175–181.

[12] K. Kaya and A. A. Selcuk. Threshold cryptography based on Asmuth-Bloom
secret sharing. Information Sciences, 177(19):4148–4160, 2007.

[13] K. Kaya and A. A. Selcuk. A verifiable secret sharing scheme based on the
CRT. In INDOCRYPT 2008, volume 5365 of LNCS, pages 414–425.

[14] M. Quisquater, B. Preneel, and J. Vandewalle. On the security of the threshold
scheme based on the CRT. In PKC’02, volume 2274 of LNCS, pages 199–210.

[15] A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung. How to share a function
securely? In STOC’94, pages 522–533. ACM, 1994.

[16] A. Shamir. How to share a secret? Comm. ACM, 22(11):612–613, 1979.

[17] V. Shoup. Practical threshold signatures. In EUROCRYPT 2000, volume
1807 of LNCS, pages 207–220.

14

