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Abstract. In threshold cryptography, function sharing schemes allow
us to distribute the computation of signature and decryption functions
among several parties. Recently, function sharing schemes using Asmuth-
Bloom secret sharing were proposed for the RSA signature and ElGa-
mal decryption functions by Kaya et al. In this paper, we extend their
ideas and present two novel function sharing schemes for the Paillier
and Naccache-Stern knapsack cryptosystems. These cryptosystems have
some interesting homomorphic properties which make them useful in
various protocols and applications.

1 Introduction

In public key cryptosystems, secure storage of the private key is an important
problem. A key that is saved only by one person can easily be lost. Giving a copy
to several people is not a good idea either since this would increase the chance
of compromise significantly. To alleviate this problem, the private key can be
shared among several people so that evaluation of the private key functions will
require cooperation among the share holders.

The problem of sharing a sensitive secret among a group of n users so that
only a sufficient number t of them can together reconstruct the secret is known
as the secret sharing problem. Well-known secret sharing schemes (SSS) in the
literature include Shamir [12] based on polynomial interpolation, Blakley [3]
based on hyperplane geometry, and Asmuth-Bloom [2] based on the Chinese
Remainder Theorem.

Secret sharing schemes have the limitation that users must reveal their shares
at the time of secret reconstruction. It would be better instead to share the
function computation among the users so that the result can be obtained from
the partial results computed by each user without requiring them to disclose
their secrets nor requiring the reconstruction of the private key. This problem is



known as the function sharing problem. Several FSSs have been proposed in the
literature for different cryptosystems, generally using the Shamir’s SSS [6, 5, 7,
11, 13].

Recently Kaya et al. [17] showed how function sharing can be achieved with
the Asmuth-Bloom SSS and gave novel FSSs for the RSA and ElGamal cryp-
tosystems. In this paper, we extend their ideas to the Paillier and Naccache-Stern
knapsack cryptosystems and present two FSSs for the decryption operations of
these public key systems.

The organization of the paper is as follows: In Section 2, we give an overview
of threshold cryptography and review the existing secret and function sharing
schemes in the literature. In Section 3 we discuss the Asmuth-Bloom SSS in
detail. In Section 4 and 5, we describe the proposed FSSs. The paper is concluded
with the discussion of proposed schemes in Section 6.

2 Background

In this section, we give an overview of the field of threshold cryptography and
discuss briefly some of the main secret and function sharing schemes in the
literature.

2.1 Secret Sharing Schemes

The problem of secret sharing and its first solutions were introduced indepen-
dently by Shamir [12] and Blakley [3] in 1979. A (t, n)-secret sharing scheme is
used to distribute a secret d among n people such that any coalition of size t
or more can construct d but smaller coalitions cannot. Furthermore, a SSS is
said to be perfect if coalitions smaller than t cannot obtain any information on
d; i.e., the candidate space for d cannot be reduced even by one candidate by
using t − 1 or fewer shares.

The first scheme for sharing a secret was proposed by Shamir [12] based on
polynomial interpolation. To obtain a (t, n) secret sharing, a random polynomial
f(x) = at−1x

t−1 + at−2x
t−2 + . . . + a0 is generated over Zp[x] where p > d, n

is a prime and a0 = d is the secret. The share of the ith party is yi = f(i),
1 ≤ i ≤ n. If t or more parties come together, they can construct the polynomial
by Lagrangian interpolation and obtain the secret, but any smaller coalitions
cannot.

Another interesting SSS is the scheme proposed by Blakley [3]. In a t dimen-
sional space, a system of t non-parallel, non-degenerate hyperplanes intersect at
a single point. In Blakley’s scheme, a point in the t dimensional space (or, its first
coordinate) is taken as the secret and each party is given a hyperplane passing
through that point. When t users come together, they can uniquely identify the
secret point, but any smaller coalition cannot.

A fundamentally different SSS is the scheme of Asmuth and Bloom [2], which
shares a secret among the parties using modular arithmetic and reconstructs it by
the Chinese Remainder Theorem. We describe this scheme in detail in Section 3.
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2.2 Function Sharing Schemes

Function sharing schemes were first introduced by Desmedt et al. [6] in 1989.
key-dependent function is distributed among n people such that any coalition
of size t or more can evaluate the function but smaller coalitions cannot. When
a coalition S is to evaluate the function, the ith user in S computes his own
partial result by using his share yi and sends it to a platform which combines
these partial results. Unlike in a secret sharing scheme, the platform here need
not be trusted since the user shares are not disclosed to the platform.

FSSs are typically used to distribute the private key operations in a public
key cryptosystem (i.e., the decryption and signature operations) among several
parties. Sharing a private key operation in a threshold fashion requires first
choosing a suitable SSS to share the private key. Then the subject function
must be arranged according to this SSS such that combining the partial results
from any t parties will yield the operation’s result correctly. This is usually a
challenging task and requires some ingenious techniques.

Several solutions for sharing the RSA, ElGamal and Paillier private key op-
erations have been proposed in the literature [6, 5, 7, 9, 11, 13, 8]. Almost all
of these schemes are based on the Shamir SSS, with the only exception of one
scheme in [6] based on Blakley. Lagrangian interpolation used in the secret re-
construction phase of Shamir’s scheme makes it a suitable choice for function
sharing, but it also provides several challenges. One of the most significant chal-
lenges is the computation of inverses in Zφ(N) for sharing the RSA function where
φ(N) should not be known by the users. The first solution to this problem, albeit
a relatively less efficient one, was proposed by Desmedt and Frankel [5], which
solved the problem by making the dealer compute all potentially needed inverses
at the setup time and distribute them to users mixed with the shares. A more
elegant solution was found a few years later by De Santis et al. [11]. They carried
the arithmetic into a cyclotomic extension of Z, which enabled computing the
inverses without knowing φ(N). Finally, a very practical and ingenious solution
was given by Shoup [13] where he removed the need of taking inverses in La-
grangian interpolation altogether by a slight modification in the RSA signature
function.

The first function sharing schemes based on the Asmuth-Bloom SSS have
been proposed by Kaya et al. [17], where they used the Asmuth-Bloom SSS to
share the RSA and ElGamal private key operations. We show in this paper that
Asmuth-Bloom SSS can also be used for sharing the Paillier and Naccache-Stern
knapsack decryption functions.

3 Asmuth-Bloom Secret Sharing Scheme

The Asmuth-Bloom SSS has the secret sharing and reconstruction procedures
as follows:

Secret sharing: To share a secret d among a group of n users, the dealer
does the following:
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1. A set of pairwise relatively prime integers m0 < m1 < m2 < . . . < mn,
where m0 > d is a prime, are chosen such that

t∏

i=1

mi > m0

t−1∏

i=1

mn−i+1. (1)

2. Let M =
∏t

i=1 mi. The dealer computes

y = d + am0

where a is a positive integer generated randomly subject to the condition
that 0 ≤ y < M .

3. The share of the ith user, 1 ≤ i ≤ n, is

yi = y mod mi.

Secret construction: Assume S is a coalition of t users to construct the
secret. Let MS =

∏
i∈S mi.

1. Given the system

y ≡ yi (mod mi)

for i ∈ S, solve y in ZMS
uniquely using the Chinese Remainder Theorem.

2. Compute the secret as

d = y mod m0.

According to the Chinese Remainder Theorem, y can be determined uniquely
in ZMS

. Since y < M ≤ MS the solution is also unique in ZM .
The Asmuth-Bloom SSS is a perfect sharing scheme: Assume a coalition S ′

of t−1 malicious users has gathered. Let y′ be the unique solution for y in ZM
S′

.
According to (1), M/MS′ > m0, hence y′ + jMS′ is smaller than M for j < m0.
Since gcd(m0, MS′) = 1, all (y′ + jMS′) mod m0 are distinct for 0 ≤ j < m0,
and there are m0 of them. That is, d can be any integer from Zm0

, and the
coalition S ′ obtains no information on d.

3.1 Function Sharing Based on the Asmuth-Bloom Scheme

In [17] Kaya et al. showed how to use the Asmuth-Bloom scheme to share the
private key operations of the RSA and ElGamal cryptosystems. Here we summa-
rize their key ideas and give a brief description of their threshold RSA signature
scheme.

In the original Asmuth-Bloom SSS, an iterative process was proposed to solve
the system y ≡ yi (mod mi). Kaya et al. [17] proposed to use a direct solution
which is more suitable for function sharing. Suppose S is a coalition of t users
gathered to construct the secret d.
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1. Let MS\{i} denote
∏

j∈S,j 6=i mj and M ′
S,i be the multiplicative inverse of

MS\{i} in Zmi
, i.e.,

MS\{i}M
′
S,i ≡ 1 (mod mi).

First, the ith user computes

ui = yiM
′
S,iMS\{i} mod MS .

2. y is computed as

y =
∑

i∈S

ui mod MS . (2)

3. The secret d is computed as

d = y mod m0.

As observed in [17], m0 in the Asmuth-Bloom SSS need not to be prime and
the scheme works correctly as long as m0 is relatively prime to mi, 1 ≤ i ≤ n.
Also, m0 need not to be known during the secret construction process until the
3rd step above.

In Kaya et al.’s work [17], the RSA signature function is shared as follows: In
the RSA setup, choose p, q to be safe primes, where N = pq, and e and d are the
public and the private exponents with ed ≡ 1 (mod φ(N)). Share the private key
d using the Asmuth-Bloom SSS with m0 = φ(N). Given yi = y mod mi, each
user computes si = wui as their partial signature. The incomplete signature s
is obtained by combining the si values as s =

∏
i∈S si mod N , which is then

converted into the actual signature s through a correction process.

4 Threshold Paillier Cryptosystem

A recent popular public key cryptosystem is a system proposed by Paillier [10]
in 1999. The Paillier cryptosystem is based on properties of Carmichael function
in ZN2 . Security of the cryptosystem is based on the intractability of computing
discrete logarithms in ZN2 without the Carmichael number λ(N).

Key Generation: Let N = pq where p and q are large prime integers. Let
g be an arbitrary element from Z

∗
N2 such that its order is a multiple of N . Let λ

denote the Carmichael function of N , i.e., λ = (p− 1)(q − 1)/2. The public and
private keys are (N, g) and λ respectively. Note that for any x ∈ Z

∗
N2 ,

xλ ≡ 1 mod N

xNλ ≡ 1 mod N2

Encryption: Let w be the message to be encrypted. Choose a random
r ∈ Z

∗
N2 and compute the ciphertext as c = gw · rN mod N2.
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Decryption: One can obtain the plaintext by computing

w =
L(cλ mod N2)

L(gλ mod N2)
mod N

where L(x) = x−1
N

for x ≡ 1 mod N .
Paillier proved that this encryption scheme is semantically secure under the

assumption that it is hard to detect whether a given random element in Z
∗
N2 is

an N -residue.
The Paillier encryption function possesses the following homomorphic prop-

erties:

E(w1 + w2) = E(w1) · E(w2)

E(k · w) = E(w)k

These properties are very useful in various multi-party protocols such as e-
voting [4, 1], private information retrieval [15], and sharing of DSA signatures [16].

4.1 The Threshold Paillier Scheme

A function sharing scheme for the Paillier cryptosystem was proposed by Fouque [8]
based on Shamir secret sharing. In what follows we present an alternative thresh-
old Paillier scheme based on the Asmuth-Bloom SSS.

1. In the Paillier setup, choose two safe primes p = 2p′ + 1 and q = 2q′ + 1
where p′ and q′ are also large random primes. Set N = pq, λ = 2p′q′ and let
β, a, b be elements randomly chosen in Z

∗
N and set θ = gβλ mod N2 where

g ∈ Z
∗
N2 and its order is a multiple of N . Set the public key be (N, g, θ). The

secret key βλ is shared with m0 = λN .
2. Let c be the ciphertext to be decrypted where c = gwrN and assume a

coalition S of size t wants to obtain the plaintext w. The ith person in the
coalition knows mj for all j ∈ S and yi = y mod mi as its secret share.

3. Each user i ∈ S computes

ui = yiM
′
S,iMS\{i} mod MS , (3)

si = cui mod N2. (4)

θi = gui mod N2 (5)

4. The incomplete decryptor s is obtained by combining the si values

s =
∏

i∈S

si mod N2. (6)

5. The θi values will be used to find correct value of θ which will be used to
correct the incomplete decryptor. Compute the incomplete public key θ as
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θ =
∏

i∈S

θi mod N2. (7)

Let κs = c−MS mod N2 and κθ = g−MS mod N2 be the correctors for s and
θ, respectively. The corrector exponent δ can be obtained by trying

θκj
θ

?≡ θ mod N2 (8)

for 0 ≤ j < t.
6. Compute the plaintext w as

s = sκs
δ mod N2 (9)

w =
L(s)

L(θ)
mod N (10)

where δ denotes the j value that satisfies (8).

The decryptor s is incomplete since we need to obtain y =
∑

i∈S ui mod MS

as the exponent of c. Once this is achieved, cy ≡ cβλ mod N2 since y = βλ +
aNφ(N) for some a.

When the equality in (8) holds we know that θ = gβλ mod N2 is the correct
public key. This equality must hold for one j value, denoted by δ, in the given
interval because since the ui values in (3) and (5) are first reduced modulo MS .
So, combining t of them will give βλ + am0 + δMS in the exponent in (7) for
some δ ≤ t − 1. Thus in (7), we obtained

θ = gβλ+am0+δMS mod N2 ≡ gβλ+δMS ≡ θgδMS ≡ θκ−δ
θ mod N2

and for j = δ equality must hold. Note that in (7) and (8) our purpose is not to
compute the public key since it is already known. We want to find the corrector
exponent δ to obtain s, which is also equal to the one we use to obtain θ.

5 Threshold Naccache-Stern Knapsack Cryptosystem

A different cryptosystem which uses bitwise encryption was proposed by Nac-
cache and Stern [14]. This cryptosystem is based on a type of knapsack problem:
Given arbitrary integers c, l, p, and a vector of integers x = (x1, ..., xn), find a

vector w ∈ {0, 1}l
such that

c ≡
l∏

i=1

xi
wi mod p (11)

When the xi are relatively prime and much smaller than the modulus p, this
knapsack problem can be solved easily. When xi are arbitrary numbers in Zp,
the problem is hard.
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Key Generation: Let p be a large prime, l is a positive integer and for i
from 1 to l, set pi to be the ith prime, starting with p1 = 2. Choose a secret
integer d < p − 1, such that gcd(p − 1, d) = 1. Set vi = d

√
pi mod p. The public

key is then p, l, v = (v1, . . . , vl). The private key is d.

Encryption: To encrypt an l-bit long message w, calculate

c =

l∏

i=1

vi
wi mod p (12)

where wi is the ith bit of message w.

Decryption: One can obtain the plaintext by computing

w =

l∑

i=1

gcd(pi, c
d mod p) − 1

pi − 1
× 2i (13)

5.1 The Threshold Naccache-Stern Scheme

To the best of our knowledge, no FSSs have been proposed for the Naccache-
Stern knapsack cryptosystem. Here we give the first realization of an FSS for
this cryptosystem with Asmuth-Bloom SSS:

1. In the Naccache-Stern Knapsack setup, choose p be a safe prime, l be a
positive integer and for i from 1 to l, set pi to be the ith prime, starting with
p1 = 2. Choose a secret integer d < p − 1, such that gcd(p − 1, d) = 1. Set
xi = d

√
pi mod p. Set the public key be p, l, x. The private key d is shared

with m0 = p − 1.
2. Let c be the ciphertext to be decrypted where c =

∏l

i=1 xi
wi mod p and

assume a coalition S of size t wants to obtain the plaintext w. The ith
person in the coalition knows mj for all j ∈ S and yi = y mod mi as its
secret share.

3. Each user i ∈ S computes

ui = yiM
′
S,iMS\{i} mod MS , (14)

si = cui mod p. (15)

4. The incomplete decryptor s is obtained by combining the si values

s =
∏

i∈S

si mod p. (16)

5. Let κ = c−MS mod p be the corrector. The corrector exponent δ can be
obtained by trying

x1
sκj ?≡ 2 mod p (17)

for 0 ≤ j < t.
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6. Compute the plaintext message w as

s = sκδ mod p, (18)

w =
l∑

i=1

(gcd(pi, s mod p) − 1)

pi − 1
× 2i (19)

Where δ denotes the j value that satisfies (17).

The decryptor s is incomplete since we need to obtain y =
∑

i∈S ui mod MS as

the exponent of c. Once this is achieved, cy ≡ cd mod p, since y = d + a(p − 1)
for some a.

Note that the equality in (17) must hold for one j ≤ t− 1 since the ui values
were already reduced modulo MS . So, combining t of them in (16) will give
d + am0 + δMS in the exponent for some δ ≤ t − 1. Thus we obtained

s = cd+am0+δMS ≡ cd+δMS ≡ scδMS ≡ sκ−δ mod p (20)

and for j = δ, equation (17) will hold.

6 Discussion of the Proposed Schemes

In this paper, we showed how the ideas of Kaya et al. [17] for function sharing
with the Asmuth-Bloom secret sharing scheme can be extended to Paillier and
Naccache-Stern knapsack cryptosystems and presented a FSS for the decryption
operation of these cryptosystems.

The proposed schemes are efficient in terms of computational complexity.
Each user needs to do O(t) multiplications, one inversion, and two exponentia-
tions for computing a partial result in the threshold Paillier scheme. Note that,
in the threshold Naccache-Stern scheme, one exponentiation is sufficient for this
phase. In both schemes, combining the partial results takes t − 1 multiplica-
tions, plus possibly a correction phase which takes an exponentiation and t − 1
multiplications.

Paillier and Naccache-Stern cryptosystems have their distinct uses due to
their homomorphic properties. These homomorphic properties make the cryp-
tosystems suitable for multi-party protocols such as e-voting [4, 1], private in-
formation retrieval [15], and sharing of DSA signatures [16]. Such applications
and protocols requiring these properties can benefit greatly from the proposed
function sharing schemes.
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[17] K. Kaya, A. A. Selçuk and Z. Tezcan. Threshold Cryptography Based on Asmuth-

Bloom Secret Sharing. Proceedings of ISCIS’06, Lecture Notes in Computer Sci-
ence, Springer-Verlag, 2006.

10


