
A Meet-in-the-Middle Attack on 8-Round AES

Hüseyin Demirci1 and Ali Aydın Selçuk2

1 Tübitak UEKAE, 41470 Gebze, Kocaeli, Turkey
huseyind@uekae.tubitak.gov.tr

2 Department of Computer Engineering
Bilkent University, 06800, Ankara, Turkey

selcuk@cs.bilkent.edu.tr

Abstract. We present a 5-round distinguisher for AES. We exploit this
distinguisher to develop a meet-in-the-middle attack on 7 rounds of AES-
192 and 8 rounds of AES-256. We also give a time-memory tradeoff
generalization of the basic attack which gives a better balancing between
different costs of the attack. As an additional note, we state a new square-
like property of the AES algorithm.

Key words: AES, Rijndael, meet-in-the-middle cryptanalysis, square
attack.

1 Introduction

In year 2000, the Rijndael block cipher was adopted by NIST as the Advanced
Encryption Standard (AES), the new standard encryption algorithm of the US
government to replace DES. The algorithm is a member of the family of square-
type algorithms [8] designed by Vincent Rijmen and John Daemen. It is currently
one of the most widely used and analyzed ciphers in the world.

AES is a 128-bit block cipher and accepts key sizes of 128, 192 and 256
bits. These versions of AES are called AES-128, AES-192 and AES-256 and the
number of rounds for these versions are 10, 12 and 14 respectively. The algorithm
is easy to understand, but the underlying mathematical ideas are strong. It has
an SP-network structure. Interaction between the operations is chosen so that
it satisfies full diffusion after two rounds. There is only one non-linear function
in the algorithm, but it does not seem to have any considerable weakness so far.

AES has been remarkably secure against attacks. Some related key attacks
can go up to 10 rounds on AES-192 and AES-256 with a complexity close to the
complexity of exhaustive search. Attacks that are not of related-key type have
been unable to go any further than 8 rounds. Most successful attacks in this
class have been based on the square property observed by the designers of the
algorithm [8].

In this paper we provide a distinguisher on 5 inner rounds of AES. This dis-
tinguisher relates a table entry of the fifth round to a table entry of the first
round using 25 parameters that remain fixed throughout the attack. Using this
distinguisher, we are able to attack up to 8 rounds of AES-256. For attacking



AES-192, we use a birthday-paradox-like approach to reduce the precomputa-
tion complexity, which enables a 7-round attack on AES-192. Our attack is also
related to the meet-in-the-middle attack of Demirci et al. [10] on the IDEA block
cipher, where a large sieving set is precomputed according to a certain distin-
guishing property of the cipher, and this set is later used to discover the round
keys by a partial decryption.

This paper proceeds as follows: In Section 2 we briefly explain the AES block
cipher and give a survey of the previous attacks. In Section 3, we review the
4-round AES distinguisher of Gilbert and Minier [13]. In Section 4, we introduce
our 5-round distinguisher for AES. In Section 5, we describe our attacks on
AES-192 and AES-256 based on this distinguisher. We conclude the paper with
a summary of the results in Section 6. As an additional note, we present a novel
square-like property of the AES algorithm in the appendix.

2 The AES Encryption Algorithm

The AES encryption algorithm organizes the plaintext as a 4× 4 table of 1-byte
entries, where the bytes are treated as elements of the finite field GF (28). There
are three main operations used in AES: the s-box substitution, shift row, and
mix column operations. There is a single s-box substitution used for all entries
of the table based on the inverse mapping in GF (28) plus an affine mapping,
which is known to have excellent differential and linear properties [19]. The shift
row operation shifts the ith column i units left for i = 0, 1, 2, 3. Mix column
operation is an MDS matrix multiplication which confuses the four entries of
each column of the table. Key mixing is done at the end of each round where
the bytes of the round key are XORed to the corresponding plaintext bytes of
the table. The interaction between the operations is designed in such a way that
full diffusion is obtained after two rounds. The key scheduling of AES is almost
linear. Our analysis is independent of the key schedule algorithm. Full details of
the encryption, decryption, and key schedule algorithms can be found in [12].

AES has been remarkably resistant against attacks. Although different at-
tacks have been tried on reduced-round versions, there is no way to break the
actual cipher faster than exhaustive search. The algorithm designers applied the
square attack to the cipher [8]. The attack uses about 232 chosen plaintexts and
breaks 6 rounds of AES with about 272 complexity. The square attack has been
improved [11] and the workload has been reduced to 246. For the key lengths
192 and 256 bits, the attack can be increased one more round with the help of
the key schedule [18]. In [13] a collision attack has been applied to the cipher
using a distinguishing property of the four-round encryption. With 232 chosen
plaintexts, the attack breaks 7 rounds of AES-192 and AES-256 with a complex-
ity of 2140. For AES-128, the attack is marginally faster than exhaustive search.
The impossible differential attack has been applied up to 7 rounds of AES [3,
6, 22, 20, 21]; but the complexities of these attacks are higher than the square
attack. Biryukov applied the boomerang attack technique to 5 and 6 rounds of
the cipher [4]. For the 128 bit key length, the boomerang attack breaks 5 rounds

2



of AES using 246 adaptive chosen plaintexts in 246 steps of analysis. The 6-round
boomerang attack requires 278 chosen plaintexts, 278 steps of analysis, and 236

bytes of memory. There is also a class of algebraic attacks applied on AES [7].
The authors write the AES S-box as a system of implicit quadratic equations. As
a result, the cryptanalysis of the system turns out to be solving a huge system of
quadratic equations. In [7], XSL method is suggested if the system of equations
is overdefined and sparse which is the case for AES. Recently, related key attacks
have been applied to the cipher [1, 2, 16, 15, 17, 23]. These attacks work up to 10
rounds of AES-192 and AES-256.

Throughout the paper, we use K(r) and C(r) to denote the round key and
the ciphertext of the rth round; K

(r)
ij and C

(r)
ij denote the byte values at row i,

column j. The arithmetic among table entries are in GF (28), where addition is
the same as bit-wise XOR.

2.1 The Square Property

The square attack is the first attack on AES which was invented by the designers
of the algorithm [9]. Proposition 1 states the distinguishing property the square
attack exploits.

Throughout this paper by an active entry, we mean an entry that takes all
byte values between 0 and 255 exactly once over a given set of plaintexts. By a
passive entry we mean an entry that is fixed to a constant byte value.

Proposition 1 ([9]). Take a set of 256 plaintexts so that one entry in the
plaintext table is active and all the other entries are passive. After applying
three rounds of AES, the sum of each entry over the 256 ciphertexts is 0.

This property leads to a straightforward attack on 4 rounds of AES where
the last round key is searched and decrypted and the third round outputs are
checked for this property. This attack can be extended one round from the top
and one round from the bottom so that 6 rounds of AES can be attacked using
this property [8, 11].

The idea behind the square attack still forms the basis of most of the anal-
ysis on AES. Therefore, obtaining more square-like properties of the cipher is
essential for evaluating its security. We state such a new square-like property of
the AES algorithm in the appendix.

3 A 4-Round Distinguisher of AES

In [13], Gilbert and Minier showed an interesting distinguishing property for
4 rounds of AES: Consider the evolution of the plaintext over 4 innner rounds,
with no whitening. Let aij denote the ith row, jth column of the plaintext. After
the first s-box transformation, define tij = S(aij). At the end of round 1, our

3



state matrix is of the form:

2t11 + c1 m12 m13 m14

t11 + c2 m22 m23 m24

t11 + c3 m32 m33 m34

3t11 + c4 m42 m43 m44

where mij and ci, 1 ≤ i ≤ 4, 2 ≤ j ≤ 4, are fixed values that depend on the
passive entries and subkey values. At the end of the second round, this gives

C
(2)
11 = 2S(2t11 + c1) + 3S(m22) + S(m33) + S(m44) + K

(2)
11

= 2S(2t11 + c1) + c5,

for some fixed value c5. Similarly we can get the other diagonal entries as:

C
(2)
22 = S(3t11 + c4) + c6

C
(2)
33 = 2S(t11 + c3) + c7

C
(2)
44 = S(t11 + c2) + c8

Since C
(3)
11 = 2C

(2)
11 + 3C

(2)
22 + C

(2)
33 + C

(2)
44 + K

(3)
11 , we can summarize the above

observations with the following proposition:

Proposition 2 ([13]). Consider a set of 256 plaintexts where the entry a11 is
active and all the other entries are passive. Encrypt this set with 3 rounds of
AES. Then, the function which maps a11 to C

(3)
11 is entirely determined by 9

fixed 1-byte parameters.

Proof. To write the equation for C
(3)
11 , the constants ci, 1 ≤ i ≤ 8, and K

(3)
11 are

required. Therefore, the nine fixed values(
c1, c2, . . . , c8,K

(3)
11

)
completely specify the mapping a11 → C

(3)
11 . ut

Proposition 2 can be generalized: Note that the argument preceding the
proposition applies to any other third round ciphertext entry and hence the
statement is true for any C

(3)
ij . Similarly, any other aij can be taken as the

active byte instead of a11.
Gilbert and Minier [13] observed that the constants c1, c2, c3, and c4 depend

on the values (a21, a31, a41) on the first column, whereas the other constants c5,
c6, c7, and c8 are independent of these variables. They used this information
to find collisions over 3 rounds of the cipher: Assume that c1, c2, c3, and c4

behave as random functions of the variables (a21, a31, a41). If we take about 216

random (a21, a31, a41) values and fix the other entries of the plaintext, by the
birthday paradox, two identical functions f, f ′ : a11 → C

(3)
11 will be obtained

with a non-significant probability by two different values of (a21, a31, a41). This
distinguishing property was used to build attacks on AES up to 7 rounds.

Through a 1-round decryption, we get the following distinguisher for 4-round
AES:

4



Proposition 3 ([13]). Consider a set of 256 plaintexts where the entry a11 is
active and all the other entries are passive. Apply 4 rounds of AES to this set.
Let the function S−1 denote the inverse of the AES s-box. Then,

S−1[(0E · C(4)
11 + 0B · C(4)

24 + 0D · C(4)
33 + 09 · C(4)

42 ) + K
(4)
11 ]

is a function of a11 determined entirely by 9 constant bytes; 1 subkey byte, and
8 bytes that depend on the key and the passive entries.

4 A 5-Round Distinguisher of AES

In this section, we show how the observations of Gilbert and Minier [13] can be
extended to 5 rounds. To the best of our knowledge, this is the first 5-round
distinguishing property of AES. This property will help us to develop attacks on
7 rounds of AES-192 and AES-256, and on 8 rounds of AES-256.

Proposition 4. Consider a set of 256 plaintexts where the entry a11 is active
and all the other entries are passive. Encrypt this set with 4 rounds of AES.
Then, the function which maps a11 to C

(4)
11 is entirely determined by 25 fixed

1-byte parameters.

Proof. By Proposition 2, in the third round we have

C
(3)
11 = 2S(2S(2t11 + c1) + c5) + 3S(2S(2t11 + c4) + c6)

+2S(S(t11 + c3) + c7) + S(S(t11 + c2) + c8) + K
(3)
11 . (1)

Similarly it can be shown that

C
(3)
22 = S(S(3t11 + c4) + c9) + 2S(3S(2t11 + c3) + c10)

+3S(S(t11 + c2) + c11) + S(3S(2t11 + c1) + c12) + K
(3)
22 , (2)

C
(3)
33 = S(S(t11 + c3) + c13) + S(2S(t11 + c2) + c14)

+2S(S(2t11 + c1) + c15) + 3S(2S(3t11 + c4) + c16) + K
(3)
33 (3)

C
(3)
44 = 3S(S(t11 + c2) + c17) + S(S(2t11 + c1) + c18)

+S(3S(3t11 + c4) + c19) + 2S(S(t11 + c3) + c20) + K
(3)
44 . (4)

Since
C

(4)
11 = 2S(C(3)

11 ) + 3S(C(3)
22 ) + S(C(3)

33 ) + S(C(3)
44 ) + K

(4)
11 , (5)

the fixed values (
c1, c2, . . . , c20,K

(3)
11 ,K

(3)
22 ,K

(3)
33 ,K

(3)
44 ,K

(4)
11

)
(6)

are sufficient to express the function a11 → C
(4)
11 . ut

5



Although each of the diagonal entries depend on 9 fixed parameters, it is
interesting to observe that the fourth round entry C

(4)
11 is entirely determined by

25 variables, rather than 36. This is a result of the fact that the constants c1, c2,
c3 and c4 are common in formulas (1–4) of all the diagonal entries. Note that,
like Proposition 2, Proposition 4 can also be generalized to any entry.

Since this 4-round property is related to a single entry, we can develop a
5-round distinguisher by considering the fifth round decryption:

Proposition 5. Consider a set of 256 plaintexts where the entry a11 is active
and all the other entries are passive. Apply 5 rounds of AES to this set. Let the
function S−1 denote the inverse of the AES S-box. Then,

S−1[(0E · C(5)
11 + 0B · C(5)

24 + 0D · C(5)
33 + 09 · C(5)

42 ) + K
(5)
11 ]

is a function of a11 determined entirely by 25 constant bytes; 5 subkey bytes, and
20 bytes that depend on the key and the passive entries.

25 bytes may be too much to search exhaustively in an attack on AES-128;
but for AES-256, we can precalculate and store all the possible values of this
function, and using this distinguisher we can attack on 7 and 8 rounds. For
AES-192, we can apply a time-memory tradeoff trick to reduce the complexity
of the precomputation of the function over these 25 parameters and to make the
attack feasible for 192-bit key size.

5 The Attack on AES

In this section, we describe a meet-in-the-middle attack on 7-round AES based
on the distinguishing property observed in Section 4. In the attack, we first
precompute all possible a11 → C

(4)
11 mappings according to Proposition 4. Then

we choose and encrypt a suitable plaintext set. Then we search certain key bytes,
do a partial decryption on the ciphertext set, and compare the values obtained
by this decryption to the values in the precomputed set. When a match is found,
the key value tried is most likely the right key value. The details of the attack
are as follows:

1. For each of the 225×8 possible values of the parameters in (6), calculate the
function a11 → C

(4)
11 , for each 0 ≤ a11 ≤ 255, according to equations (1–4)

and (5).
2. Let Kinit denote the initial whitening subkey blocks (K(0)

11 ,K
(0)
22 ,K

(0)
33 ,K

(0)
44 ).

??? Try each possible value of Kinit, and choose a set of 256 plaintexts
accordingly to satisfy that the first entry takes every value from 0 to 255
and all other entries are fixed at the end of round 1. Also search K

(1)
11 to

guess the value of C
(1)
11 . Encrypt this set of plaintexts with 7 rounds of AES.

3. Let Kfinal denote the subkey blocks (K(7)
11 ,K

(7)
24 ,K

(7)
33 ,K

(7)
42 ,K

(6)
11 ). Search

over all possible values of Kfinal. Using Kfinal, do a partial decryption of
the ciphertext bytes C

(7)
11 , C

(7)
24 , C

(7)
33 and C

(7)
42 to obtain the entry C

(5)
11 over

the set of 256 ciphertexts obtained in Step 2.

6



4. Now if the Kinit and Kfinal subkeys are guessed correctly, the function
C

(1)
11 → C

(5)
11 must match one of the functions obtained in the precomputation

stage. Compare the sequence of the 256 C
(5)
11 values obtained in Step 3 to

the sequences obtained in precomputation. If a match is found, the current
key is the correct key by an overwhelming probability, since the probability
of having a match for a wrong key is approximately (2−8)256 = 2−2048.

5. We repeat the attack once more with another target value instead of C
(5)
11

using the same plaintext set. Having already discovered Kinit, this attack
gives us another five key bytes from the final rounds.

6. Now having recovered most of the key bytes, we can search the remaining
key bytes exhaustively.

This attack requires 240 chosen plaintexts. There is a precomputation step
which calculates 2208 possible values for 256 plaintexts. Therefore the complexity
of this step, which will be done only once, is 2216 evaluations of the function.
In the key search phase, for every combination of Kinit, K

(1)
11 , and Kfinal, we

do partial decryption over 256 ciphertexts which makes 288 partial decryptions
in total. As in [8] and [11], we assume that 28 partial decryptions take approx-
imately the time of a single encryption. Therefore the processing complexity of
this attack is comparable to 280 encryptions.

Note that if we take the second target entry used in Step 5 to be an entry on
the same column as C

(5)
11 , such as C

(5)
21 , equations (1–4) will be identical in the

two computations, and the only change will be on a few coefficients in equation
(5). Hence, there won’t be a need for a separate precomputation; the necessary
values for C

(1)
11 → C

(4)
21 can be obtained with a slight overhead. However, we

will need separate memory to store the obtained values. Hence, the memory
requirement of the AES-192 attack is 2 × 2216 = 2217 bytes. When attacking
AES-256, C

(5)
31 and C

(5)
41 must also be targeted in order to find 10 extra key

bytes before the exhaustive search. This makes the memory complexity of the
attack on 7-round AES-256 2218 bytes.

5.1 A Time-Memory Tradeoff

The cost of the attack above is dominated by generation of the function set
in the precomputation phase. A time-memory tradeoff approach can be useful
here to balance the costs: Instead of evaluating all the possible functions in the
precomputation phase, we can evaluate and store only a part of the possible
function space. On the other hand, we must repeat the key search procedure a
number of times with different plaintext sets to compensate the effect of this
reduction. In general, if we reduce the size of the function set by a factor of n1

and repeat the key search procedure for each candidate key n2 times, for some
n1, n2 > 1, the probability of having a match for the right key becomes, for
relatively large n1,

1−
(

1− 1
n1

)n2

≈ 1− e−
n2
n1 , (7)

7



which means a success probability of 63% for n2 = n1 and 98% for n2 = 4n1.
By this tradeoff approach, one can balance different costs of the attack. The

attack’s complexity is currently dominated by the complexity of the precompu-
tation phase and the required storage. As seen in Table 1, the basic attack is
not feasible on AES-192. By the tradeoff approach, the precomputation cost can
be reduced as desired, and the attack becomes feasible on AES-192 for n1 > 244

(i.e., n > 44).

5.2 Extension to 8 Rounds

To attack 8 rounds of AES, we follow exactly the same steps of the 7-round
attack, but we also search the last round key exhaustively. Therefore the data,
precomputation, and storage complexities do not change, whereas the complexity
of the key search phase increases by a factor of 2128. Hence the time complexity of
the attack on 8-round AES becomes 2208 while the memory complexity is 2216

bytes. Although this attack appears to be dominated by Hellman’s [14] time-
memory tradeoff on both counts, it is a non-trivial attack faster than exhaustive
search on 8-round AES-256.

The performance of our attacks and the previous attacks on AES are sum-
marized in Table 1. Related key attacks, which are a different phenomenon, are
not included in the comparison.

As seen in Table 1, the complexity of our attacks includes a precomputation
cost in addition to the regular time complexity. The precomputation cost is
considered separately from the rest of the time complexity due to the fact that
it is executed only once at the time of initialization. The precomputation costs
are given in terms of one evaluation of the a11 → C

(4)
11 function according to

equations (1–5).

6 Conclusion

We have shown that if only one entry of a set of plaintexts is active while the
other 15 entries are passive, each entry of the ciphertext after 4 rounds of AES
encryption can be entirely defined using 25 fixed bytes. Using this property,
we have developed the first 5-round distinguisher of AES. This enabled us to
develop attacks on 7 and 8 rounds of AES-256 and 7 rounds of AES-192. The
attack has a huge precomputation and memory complexity, but the data and
time complexities are comparable with the best existing attacks. We have used a
birthday paradox approach to reduce the precomputation and memory complex-
ities. The proposed attacks present a new way of utilizing square-like properties
for attacking AES.

Acknowledgments

We would like to thank Çağdaş Çalık for a helpful discussion on time-memory
tradeoff attacks.

8



Complexity
Block Cipher Paper Rounds Type Data Memory Time Pre.

AES-192 [13] 7 Collision 232 284 2140 –
[21] 7 Imp. Differential 292 2153 2186 –
[18] 7 Square 232 232 2184 –
[11] 7 Square 19 · 232 232 2155 –
[11] 7 Square 2128 − 2119 264 2120 –

This paper 7 MitM 232 2217 280 2216

This paper 7 MitM-TM 234+n 2217−n 282+n 2216−n

[11] 8 Square 2128 − 2119 264 2188 –

AES-256 [18] 7 Square 232 232 2200 –
[13] 7 Collision 232 284 2140 –
[11] 7 Square 21 · 232 232 2172 –
[11] 7 Square 2128 − 2119 264 2120 –
[21] 7 Imp. Differential 292.5 2153 2250.5 –

This paper 7 MitM 232 2218 280 2216

This paper 7 MitM-TM 234+n 2218−n 282+n 2216−n

[11] 8 Square 2128 − 2119 2104 2204 –
This paper 8 MitM 232 2216 2208 2216

This paper 8 MitM-TM 234+n 2216−n 2210+n 2216−n

Table 1. Plaintext, memory, time, and precomputation time complexities of the chosen
plaintext attacks on AES-192 and AES-256. “MitM” stands for a meet-in-the-middle
attack; “MitM-TM” denotes the time-memory tradeoff version of the attack as de-
scribed in Section 5.1. Here we assume that if the precomputed set is reduced by a
factor of 2n, the key search procedure is repeated 2n+2 times to compensate for this
reduction.

References

1. E. Biham, O. Dunkelman, and N. Keller. Related-key and boomerang attacks. In
EUROCRYPT 2005, volume 3494 of LNCS, pages 507–525. Springer-Verlag, 2005.

2. E. Biham, O. Dunkelman, and N. Keller. Related-key impossible differential attacks
on AES-192. In CT-RSA 2006, volume 3860 of LNCS, pages 21–31. Springer-
Verlag, 2006.

3. E. Biham and N. Keller. Cryptanalysis of reduced variants of Rijndael. In The
Third AES Candidate Conference, 2000.

4. A. Biryukov. Boomerang attack on 5 and 6-round AES. In The Fourth Conference
on Advanced Encryption Standard, 2004.

5. A. Biryukov and A. Shamir. Structural cryptanalysis of SASAS. In EUROCRYPT
2001, volume 2045 of LNCS, pages 394–405. Springer-Verlag, 2001.

6. J. H. Cheon, M. J. Kim, K. Kim, J. Lee, and S. Kang. Improved impossible
differential cryptanalysis of Rijndael. In ICISC ’2001, volume 2288 of LNCS, pages
39–49. Springer-Verlag, 2001.

7. N. T. Courtois and J. Pieprzyk. Cryptanalysis of block ciphers with overdefined
systems of equations. In ASIACRYPT 2002, volume 2501 of LNCS, pages 267–287.
Springer-Verlag, 2002.

9



8. J. Daemen, L. Knudsen, and V. Rijmen. The block cipher SQUARE. In FSE 1997,
volume 1267 of LNCS, pages 149–165. Springer-Verlag, 1997.

9. J. Daemen and V. Rijmen. AES proposal: Rijndael. In The First AES Candidate
Conference, 1998.

10. H. Demirci, A. A. Selçuk, and E. Türe. A new meet in the middle attack on IDEA.
In SAC 2003, volume 3006 of LNCS, pages 117–129. Springer-Verlag, 2004.

11. N. Ferguson, J. Kelsey, S. Lucks, B. Schneier, M. Stay, D. Wagner, and D. Whiting.
Improved cryptanalysis of Rijndael. In FSE 2000, volume 1978 of LNCS, pages
213–230. Springer-Verlag, 2001.

12. FIPS PUB 197. NIST.
13. H. Gilbert and M. Minier. A collision attack on 7 rounds of Rijndael. In The Third

AES Candidate Conference, 2000.
14. M. E. Hellman. A cryptanalytic time-memory trade-off. IEEE Trans. Information

Theory, 26(4):401–406, 1980.
15. S. Hong, J. Kim, S. Lee, and B. Preneel. Related-key rectangle attacks on reduced

versions of SHACAL-1 and AES-192. In FSE 2005, volume 3557 of LNCS, pages
368–383. Springer-Verlag, 2005.

16. G. Jakimoski and Y. Desmedt. Related-key differential cryptanalysis of 192-bit key
AES variants. In SAC 2003, volume 3006 of LNCS, pages 208–221. Springer-Verlag,
2004.

17. J. Kim, S. Hong, and B. Preneel. Related-key rectangle attacks on reduced AES-192
and AES 256. In FSE 2007, volume 4593 of LNCS, pages 225–241. Springer-Verlag,
2007.

18. S. Lucks. Attacking seven rounds of Rijndael under 192-bit and 256-bit keys. In
The Third AES Candidate Conference, 2000.

19. K. Nyberg and L.R Knudsen. Provable security against a differential attack. Jour-
nal of Cryptology, 8(1):27–38, 1995.

20. R. C. W. Phan. Classes of impossible differentials of Advanced Encryption Stan-
dard. IEE Electronics Letters, 38(11):508–510, 2002.

21. R. C. W. Phan. Impossible differential cryptanalysis of 7-round Advanced Encryp-
tion Standard AES. Information Processing Letters, 91:33–38, 2004.

22. R. C. W. Phan and M.U Siddiqi. Generalized impossible differentials of Advanced
Encryption Standard. IEE Electronics Letters, 37(14):896–898, 2001.

23. W. Zhang, W. Wun, L. Zhang, and D. Feng. Improved related-key impossible
differential attacks on reduced round AES-192. In SAC 2006, volume 4356 of
LNCS, pages 15–27. Springer-Verlag, 2007.

A A Semi-Square Property of AES

In this section we present a semi-square property of the AES encryption algo-
rithm. This property observes the effect of fixing a certain bit position over the
diagonal entries.

Proposition 6. Take a set of AES plaintexts where all the non-diagonal entries
are fixed. For the diagonal entries, choose a certain bit position and fix that bit
of all the four diagonal entries; vary the remaining bits and obtain the set of all
possible (27)4 values of these plaintexts. Apply three rounds of AES to this set.
Then the sum of each table entry over the ciphertext set obtained will be 0.

10



One can use this semi-square property as a distinguisher to develop attacks
on AES. Instead of one active entry used in the square attack, the semi-square
property uses 4 semi-active entries. Therefore, the semi-square property is less
efficient in terms of the required data amount. Also it is difficult to increase
the number of rounds in an attack since it uses the diagonal entries. On the
other hand, it is interesting to observe the effect of fixing a one-bit position.
Although the s-box of AES is perfect in terms of linear and differential properties,
some structural properties can still be tracked if we fix a one-bit position. This
property is not preserved if we fix two or more bit positions. Understanding
the mechanism behind this observation can help us to deduce more square-like
properties of the cipher. This example illustrates that square properties are not
restricted to just the cases where all possible values of one cell are enumerated.

11


