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Abstract—Function sharing deals with the problem and Asmuth-Bloom [1] based on the Chinese Remainder
of distribution of the computation of a function (such Theorem.
as decryption or signature) among several parties. The A shortcoming of secret sharing schemes is the need to
necessary values for the computation are distributed 10 o7 the secret shares during the reconstruction phase.
the participating parties using a secret sharing scheme The system would be more secure if the subject function
(SSS). Several function sharing schemes have been pro- y . . )
posed in the literature, with most of them using Shamir &N be computed without revealing the secret shares or
secret sharing as the under|y|ng SSS. In th|s paper, we I’eCOHStI'UC'[Ing the secret. ThIS |S knOWn as the fUI’]CtIOﬂ
investigate how threshold cryptography can be conducted sharing problem. A function sharing scheme requires
with Blakley secret sharing scheme and present a novel distributing the function’s computation according to the
function sharing scheme for the RSA cryptosystem. The underlying SSS such that each part of the computation
chall_enge is that gonstructing the secret in Blakley’s SSS can be carried out by a different user and then the
Fequl“es the so';’.t'on.Of a linear hs.?’Stem Wh't‘?h normally yartial results can be combined to yield the function’s
involves computing inverses, while computing inverses - - - Lo
modulo 6(N) cannot be tolerated in a threshold RSA value without d|sc_losmg the individual secrets. Seyeral
system in any way. protocols for function sharing have been proposed in the
Index Terms—threshold cryptography, RSA, function literature [3], [4], [5], [6], [13], [8], [11]. Nearly all the

sharing, Blakley secret sharing. existing solutions for function sharing uses Shamir secret
sharing as the underlying SSS.
| INTRODUCTION In this paper we present a novel threshold RSA

signature scheme based on Blakley's secret sharing as
The secure storage of the private keys of a cryptosyge explain below.

tem is an important problem. The possession of a highly
sensitive key by an individual may not be desirable gg
the key can easily be lost or as the individual may not be
fully trusted. Giving copies of the key to more than one The problem of secret sharing and the first solutions
individual increases the risk of compromise. A solutiowere introduced in 1979 independently by Shamir [12]
to this problem is to give shares of the key to severand Blakley [2]. A(t,n)-secret sharing scheme is used
individuals, forcing them to cooperate to find the secrén distribute a secret amongn people such that any
key. This not only reduces the risk of losing the kegoalition of sizet or more can construaf but smaller
but also makes compromising the key more difficulgoalitions cannot.

In threshold cryptography, secret sharing deals with thisShamir secret sharing is based on polynomial inter-
problem, namely, sharing a highly sensitive secret amopglation over a finite field. It uses the fact that we can
a group ofn users so that only when a sufficienfind a polynomial of degree— 1 givent data points. To
number ¢t of them come together can the secret bgenerate a polynomigl(z) = Zf;é a;xt, ag is set to the
reconstructed. Well-known secret sharing schemes (SS8¢ret value and the coefficients to a;_; are assigned

in the literature include Shamir [12] based on polynomiaandom values in the field. The valy&i) is given to
interpolation, Blakley [2] based on hyperplane geometmyser:. Whent out of n users come together, they can

Secret Sharing Schemes



construct the polynomial using Lagrange interpolatiod. Our Contribution

and can find the secret. In this work, we show how to do threshold RSA
Blakley secret sharing scheme has a different approagfnatures using Blakley SSS. Blakley’s scheme, which
based on hyperplane geometry: To implementta) s based on solving linear systems, naturally requires
threshold scheme, each of theusers is given a hyper-computing inverses for reconstructing the secret. We
plane equation in adimensional space over afinite.fieldslhow, in a spirit similar to Shoup’s work, how to utilize
such that each hyperplane passes through a certain p@iey's SSS for threshold cryptography while avoiding

The intersection point of the hyperplanes is the secrgbmputation of inverses moduld(N') completely.
Whent users come together, they can solve the system
of equations to find the secret. [I. BLAKLEY'S SECRETSHARING SCHEME

Blakley’s SSS uses hyperplane geometry to solve the
secret sharing problem. The secret is a point in-a

Function Shal‘ing is the Concept of distribution of thgimensiona| space and shares are affine hyperp|anes
computation of a function such that when a sufficiefat pass through this point. An affine hyperplane in a
number of users come together they can compute thgimensional space with coordinates in a figiccan be

value of the function without revealing their secret sharggscribed by a linear equation of the following form:
but less than the threshold number of users cannot. This

problem is related to secret sharing as the secret values arry +ag@y + ... + ame = b.
needed for partial computations are distributed usinthe intersection point is obtained by finding the inter-
secret sharing. section of anyt of these hyperplanes. The secret can be

Several solutions for sharing the RSA, ElGamal, anghy of the coordinates of the intersection point or any
Paillier private key operations have been proposed fimction of the coordinates. We take the secret to be the
the literature [3], [4], [5], [6], [7], [10], [11], [13], [9]. first coordinate of the point of intersection.
Almost all of these schemes have been based on the .
Shamir SSS. . Dealing Phase

The additive nature of the Lagrange’s interpolation Let m be a prime and letF = Zy be the field we
formula used in the combining phase of Shamir’s scherfiée working on. The dealer generates a secret point
makes it an attractive choice for function sharing, but", where the first coordinate(1] is set to the secret
it also provides several challenges. One of the moglue (the RSA private key in our case) and sets the
significant challenges is the computation of inverses Y@lues of the other coordinates randomly from the field
Zs( for the division operations in Lagrange’s formula? - The ith user will get a hyperplane equation ovgy
where ¢ (V) should not be known by the users. There
are two main difficulties in this respect:

1) An inversez—! will not exist modulo ¢ (N) if

ged (xz, N) # 1.
2) Even when:~! exists it should not be computabl
by a user, since that would enable computing Ax =y. (2)

| ¢(fV)_- hi bi bei ffici The dealer then sends the secret valueypfalong
Early solutions to this problem, albeit not very efficienty;y, .. 4., to useri. The coefficientss;; are not

were given in [3], [11]. Afterwards an ingenious SOIUtioréensitive and can be made public if needed.
was given by Shoup [13] where he removed the need of

taking inverses in Lagrange interpolation. B. Share Combining Phase

Shoup’s practical RSA scheme has inspired similar Share combining step is simply finding the solution
works on different cryptosystems. Fouque et al. [df a linear system of equations. Suppose that a coalition
proposed a similar threshold solution for the Paillies = {i;,...,i;} of users come together. They form a
cryptosystem and used it in e-voting and lottery pramatrix As using their hyperplane equations and solve
tocols. Later, Lysyanskaya and Peikert [10] improved B
this work and obtained a threshold Paillier encryption Asz =ys, (3)
scheme secure under the adaptive security model. TWieereys is the vector of the secret shares of the users.
current paper is also inspired by Shoup’s work. The secret is found as the first coordinate of the solution.

B. Function Sharing Schemes

;11 + ;29 + ...+ At = Yi- (1)

For a (t,n) threshold scheme there will be such
hyperplane equations, and hence we will haverant
éinear system,



I1l. SHARING RSA SGNATURE COMPUTATION wherea andb are integers such that

In this section, we describe our threshold RSA signa- Asa+eb=1, 9)

ture scheme with Blakley secret sharing. , , _
which can be obtained by the extended Euclidean algo-

A. Setup rithm on Ag ande.
In the RSA setup phase, choose two large primes
and g, and compute the RSA modulus 5= pq. The
public key e is chosen as a prime number reIativeIY : , )
prime to (IV), the details of which will be explainedUtion of the linear systemisz = ys. However, this

in Section V. After choosing, the private keyd is SYSEM may not have a unique solution o). If
computed such thatd = 1 (mod ¢(N)). Then the 8°d(As,¢(N)) > 1, the matrix As will not have an

dealer shares the private ke amongn users using "MVerse modulop(N), and the linear system will have

IV. SOLUTION OF THELINEAR SYSTEM
In Blakley's SSS, the private key is found by so-

Blakley SSS inZ many different solutions. Interestingly, our threshold
o ¢(N)- signature scheme computes the correct signature in this
B. Signing case as well.

Let H(.) be a hash function mapping input messagesWhen gcd(As,#(N)) > 1 and the linear system
to Z% and letw = H(M) € Z% be the hashed messaggields many different solutions fat, note that the value
to be signed. Assume a coalitiah of size ¢t wants to Asd is a fixed number for all these possible solutions,

obtain the signature = w? mod N. and is equal to
.1) Geperatlng the _I?artlal Slgnature_s:Let S_ = Asd = Sicirys.
{i1,... it} be the coalition of users, forming the linear
system Hence, the incomplete signature
AS'T = ys Sp - 'U)Eicilyi mod N

. Asd
Let ¢;; be theij-th cofactor of matrixAs and letCs be = w™"mod N

the adjugate matrix, is the same for every solution of the systetgr = ys.
Then the signature is obtained froms, as

€11 C21 ... Ci1
Cl2 €22 ... C2 s = sgwb mod N,
Cs = . o ) .
: : I wherea andb are the integer solutions dfsa+eb = 1.
it C2¢ ... Ct Hence, the signatureis w? mod N for the rightd value,
If we denote the determinant ofs by Ag, we have ~ computed according to the public key
AsCs = CsAg = Agly, (4) V. CHOOSINGe

The choice ofe is critical in the setup phase because
the solution depends anandAs being relatively prime.
To achieve this, we can either choose a special matrix
whose determinant we know to be relatively primeefo

whereI; denotes the x t identity matrix.
For our scheme, each usee S computes his partial
signature as

s; = w¥ mod N. (5) or choosee as a sufficiently large prime according to
2) Combining the Partial Signaturesto combine the @nd7 so that the probability that\s is divisible by e
partial signatures, we simply compute will be negligible for any coalitionS.

(6) A. Choosinge Probabilistically

The probability of a random integer’s being divisible
by a primee is 1/e. So, if we have &t,n) threshold

sp = w™s% mod N. (7) scheme, the probability that the determinant of none of

Given thate is a prime number relatively prime tothe (}) As matrices will be divisible by is (1 — %)(t)-

Ag, it is easy to compute the signatuse= w? mod N If we takee > (7)), we have

from s,. Take ne
s = sgwb mod N, (8) (1 N e> ~l (10)

Sp = 8,5, - .. 8;, mod NN.

Note that, from equation (4), we have



B. Using a Vandermonde Matrix

A simple choice for the matrixA that enables us
to guarantee thae will be relatively prime to the [g]
determinant of the coefficient matrix is to choose the
rows of the matrixA as the rows of a Vandermonde
. : ) (7]
matrix. Then,As will have the following form for any
coalition S:

(5]

t—1
1 a a? ay (8]
1 ay a3 at{l
As =
1 a; a? ai_l

The determinant of the Vandermonde matrix is nonzerag)
provided that no two rows are identical, and it is found
by the following formula :

¢ [11]

Asl= [ (ai—ay) (11)

3,j=1,i<j [12]

Without loss of generality takgaj,as,...
(1,n2,... ,n). Obviously [T;_;,.; (a
Hi,j:l,i<j (a;

van)
—a;) divides

[13]
—aj). We also have

n

I (ai—a;)=1%2%. (n— 1)

ij=1,i<j

(12)

for someaq, as,...,a,_1. Hence by choosing as a
prime greater tham we can guarantee that the determi-
nant of anyAs will be relatively prime toe.

VI. CONCLUSION

We presented an RSA threshold signature scheme
based on Blakley secret sharing. To the best of our
knowledge, this is the first threshold RSA signature
scheme that uses Blakley SSS as the underlying secret
sharing scheme. The scheme is as efficient as Shoup’s
practical threshold RSA signature and can be easily
implemented. Moreover, this approach can be extended
to other public key cryptosystems where the private key
is used in the exponent.
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