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Abstract—Function sharing deals with the problem
of distribution of the computation of a function (such
as decryption or signature) among several parties. The
necessary values for the computation are distributed to
the participating parties using a secret sharing scheme
(SSS). Several function sharing schemes have been pro-
posed in the literature, with most of them using Shamir
secret sharing as the underlying SSS. In this paper, we
investigate how threshold cryptography can be conducted
with Blakley secret sharing scheme and present a novel
function sharing scheme for the RSA cryptosystem. The
challenge is that constructing the secret in Blakley’s SSS
requires the solution of a linear system which normally
involves computing inverses, while computing inverses
modulo φ(N) cannot be tolerated in a threshold RSA
system in any way.

Index Terms—threshold cryptography, RSA, function
sharing, Blakley secret sharing.

I. I NTRODUCTION

The secure storage of the private keys of a cryptosys-
tem is an important problem. The possession of a highly
sensitive key by an individual may not be desirable as
the key can easily be lost or as the individual may not be
fully trusted. Giving copies of the key to more than one
individual increases the risk of compromise. A solution
to this problem is to give shares of the key to several
individuals, forcing them to cooperate to find the secret
key. This not only reduces the risk of losing the key
but also makes compromising the key more difficult.
In threshold cryptography, secret sharing deals with this
problem, namely, sharing a highly sensitive secret among
a group of n users so that only when a sufficient
number t of them come together can the secret be
reconstructed. Well-known secret sharing schemes (SSS)
in the literature include Shamir [12] based on polynomial
interpolation, Blakley [2] based on hyperplane geometry,

and Asmuth-Bloom [1] based on the Chinese Remainder
Theorem.

A shortcoming of secret sharing schemes is the need to
reveal the secret shares during the reconstruction phase.
The system would be more secure if the subject function
can be computed without revealing the secret shares or
reconstructing the secret. This is known as the function
sharing problem. A function sharing scheme requires
distributing the function’s computation according to the
underlying SSS such that each part of the computation
can be carried out by a different user and then the
partial results can be combined to yield the function’s
value without disclosing the individual secrets. Several
protocols for function sharing have been proposed in the
literature [3], [4], [5], [6], [13], [8], [11]. Nearly all the
existing solutions for function sharing uses Shamir secret
sharing as the underlying SSS.

In this paper we present a novel threshold RSA
signature scheme based on Blakley’s secret sharing as
we explain below.

A. Secret Sharing Schemes

The problem of secret sharing and the first solutions
were introduced in 1979 independently by Shamir [12]
and Blakley [2]. A(t, n)-secret sharing scheme is used
to distribute a secretd amongn people such that any
coalition of sizet or more can constructd but smaller
coalitions cannot.

Shamir secret sharing is based on polynomial inter-
polation over a finite field. It uses the fact that we can
find a polynomial of degreet−1 given t data points. To
generate a polynomialf(x) =

∑t−1
i=0 aix

i, a0 is set to the
secret value and the coefficientsa1 to at−1 are assigned
random values in the field. The valuef(i) is given to
user i. When t out of n users come together, they can



construct the polynomial using Lagrange interpolation
and can find the secret.

Blakley secret sharing scheme has a different approach
based on hyperplane geometry: To implement a(t, n)
threshold scheme, each of then users is given a hyper-
plane equation in at dimensional space over a finite field
such that each hyperplane passes through a certain point.
The intersection point of the hyperplanes is the secret.
When t users come together, they can solve the system
of equations to find the secret.

B. Function Sharing Schemes

Function sharing is the concept of distribution of the
computation of a function such that when a sufficient
number of users come together they can compute the
value of the function without revealing their secret shares
but less than the threshold number of users cannot. This
problem is related to secret sharing as the secret values
needed for partial computations are distributed using
secret sharing.

Several solutions for sharing the RSA, ElGamal, and
Paillier private key operations have been proposed in
the literature [3], [4], [5], [6], [7], [10], [11], [13], [9].
Almost all of these schemes have been based on the
Shamir SSS.

The additive nature of the Lagrange’s interpolation
formula used in the combining phase of Shamir’s scheme
makes it an attractive choice for function sharing, but
it also provides several challenges. One of the most
significant challenges is the computation of inverses in
Zφ(N) for the division operations in Lagrange’s formula
whereφ (N) should not be known by the users. There
are two main difficulties in this respect:

1) An inversex−1 will not exist moduloφ (N) if
gcd (x,N) 6= 1.

2) Even whenx−1 exists it should not be computable
by a user, since that would enable computing
φ (N).

Early solutions to this problem, albeit not very efficient,
were given in [3], [11]. Afterwards an ingenious solution
was given by Shoup [13] where he removed the need of
taking inverses in Lagrange interpolation.

Shoup’s practical RSA scheme has inspired similar
works on different cryptosystems. Fouque et al. [7]
proposed a similar threshold solution for the Paillier
cryptosystem and used it in e-voting and lottery pro-
tocols. Later, Lysyanskaya and Peikert [10] improved
this work and obtained a threshold Paillier encryption
scheme secure under the adaptive security model. The
current paper is also inspired by Shoup’s work.

C. Our Contribution

In this work, we show how to do threshold RSA
signatures using Blakley SSS. Blakley’s scheme, which
is based on solving linear systems, naturally requires
computing inverses for reconstructing the secret. We
show, in a spirit similar to Shoup’s work, how to utilize
Blakley’s SSS for threshold cryptography while avoiding
computation of inverses moduloφ(N) completely.

II. B LAKLEY ’ S SECRETSHARING SCHEME

Blakley’s SSS uses hyperplane geometry to solve the
secret sharing problem. The secret is a point in at-
dimensional space andn shares are affine hyperplanes
that pass through this point. An affine hyperplane in a
t-dimensional space with coordinates in a fieldF can be
described by a linear equation of the following form:

a1x1 + a2x2 + . . .+ atxt = b.

The intersection point is obtained by finding the inter-
section of anyt of these hyperplanes. The secret can be
any of the coordinates of the intersection point or any
function of the coordinates. We take the secret to be the
first coordinate of the point of intersection.

A. Dealing Phase

Let m be a prime and letF = Zm be the field we
are working on. The dealer generates a secret pointx in
Ft, where the first coordinatex[1] is set to the secret
value (the RSA private keyd in our case) and sets the
values of the other coordinates randomly from the field
F . The ith user will get a hyperplane equation overF ,

ai1x1 + ai2x2 + . . .+ aitxt = yi. (1)

For a (t, n) threshold scheme there will ben such
hyperplane equations, and hence we will have ann× t
linear system,

Ax = y. (2)

The dealer then sends the secret value ofyi along
with ai1, . . . , ait to useri. The coefficientsaij are not
sensitive and can be made public if needed.

B. Share Combining Phase

Share combining step is simply finding the solution
of a linear system of equations. Suppose that a coalition
S = {i1, . . . , it} of users come together. They form a
matrix AS using their hyperplane equations and solve

ASx = yS , (3)

whereyS is the vector of the secret shares of the users.
The secret is found as the first coordinate of the solution.



III. SHARING RSA SIGNATURE COMPUTATION

In this section, we describe our threshold RSA signa-
ture scheme with Blakley secret sharing.

A. Setup

In the RSA setup phase, choose two large primesp
and q, and compute the RSA modulus asN = pq. The
public key e is chosen as a prime number relatively
prime to φ(N), the details of which will be explained
in Section V. After choosinge, the private keyd is
computed such thated ≡ 1 (mod φ(N)). Then the
dealer shares the private keyd amongn users using
Blakley SSS inZφ(N).

B. Signing

Let H(.) be a hash function mapping input messages
to Z∗N and letw = H(M) ∈ Z∗N be the hashed message
to be signed. Assume a coalitionS of size t wants to
obtain the signatures = wd mod N .

1) Generating the Partial Signatures:Let S =
{i1, . . . , it} be the coalition oft users, forming the linear
system

ASx = yS .

Let cij be theij-th cofactor of matrixAS and letCS be
the adjugate matrix,

CS =


c11 c21 . . . ct1
c12 c22 . . . ct2
...

...
...

...
c1t c2t . . . ctt

 .

If we denote the determinant ofAS by ∆S , we have

ASCS = CSAS = ∆SIt, (4)

whereIt denotes thet× t identity matrix.
For our scheme, each useri ∈ S computes his partial

signature as

si = wci1yi mod N. (5)

2) Combining the Partial Signatures:To combine the
partial signatures, we simply compute

sp = si1si2 . . . sit mod N. (6)

Note that, from equation (4), we have

sp = w∆Sd mod N. (7)

Given thate is a prime number relatively prime to
∆S , it is easy to compute the signatures = wd mod N
from sp. Take

s = sapw
b mod N, (8)

wherea andb are integers such that

∆Sa+ eb = 1, (9)

which can be obtained by the extended Euclidean algo-
rithm on ∆S ande.

IV. SOLUTION OF THE L INEAR SYSTEM

In Blakley’s SSS, the private key is found by so-
lution of the linear systemASx = yS . However, this
system may not have a unique solution overZφ(N). If
gcd(∆S , φ(N)) > 1, the matrixAS will not have an
inverse moduloφ(N), and the linear system will have
many different solutions. Interestingly, our threshold
signature scheme computes the correct signature in this
case as well.

When gcd(∆S , φ(N)) > 1 and the linear system
yields many different solutions ford, note that the value
∆Sd is a fixed number for all these possible solutions,
and is equal to

∆Sd = Σici1yi.

Hence, the incomplete signature

sp = wΣici1yi mod N

= w∆Sd mod N

is the same for every solution of the systemASx = yS .
Then the signatures is obtained fromsp as

s = sapw
b mod N,

wherea andb are the integer solutions of∆Sa+eb = 1.
Hence, the signatures iswd mod N for the rightd value,
computed according to the public keye.

V. CHOOSINGe

The choice ofe is critical in the setup phase because
the solution depends one and∆S being relatively prime.
To achieve this, we can either choose a special matrix
whose determinant we know to be relatively prime toe,
or choosee as a sufficiently large prime according tot
andn so that the probability that∆S is divisible by e
will be negligible for any coalitionS.

A. Choosinge Probabilistically

The probability of a random integer’s being divisible
by a primee is 1/e. So, if we have a(t, n) threshold
scheme, the probability that the determinant of none of

the
(
n
t

)
AS matrices will be divisible bye is

(
1− 1

e

)(nt).
If we takee�

(
n
t

)
, we have(
1− 1

e

)(nt)
≈ 1 . (10)



B. Using a Vandermonde Matrix

A simple choice for the matrixA that enables us
to guarantee thate will be relatively prime to the
determinant of the coefficient matrix is to choose the
rows of the matrixA as the rows of a Vandermonde
matrix. Then,AS will have the following form for any
coalitionS:

AS =


1 a1 a2

1 . . . at−1
1

1 a2 a2
2 . . . at−1

2
...

...
...

...
...

1 at a2
t . . . at−1

t


The determinant of the Vandermonde matrix is nonzero,
provided that no two rows are identical, and it is found
by the following formula :

|AS | =
t∏

i,j=1,i<j

(ai − aj) (11)

Without loss of generality take(a1, a2, . . . , an) =
(1, 2, . . . , n). Obviously

∏t
i,j=1,i<j (ai − aj) divides∏n

i,j=1,i<j (ai − aj). We also have

n∏
i,j=1,i<j

(ai − aj) = 1α12α2 . . . (n− 1)αn−1 (12)

for someα1, α2, . . . , αn−1. Hence by choosinge as a
prime greater thann we can guarantee that the determi-
nant of anyAS will be relatively prime toe.

VI. CONCLUSION

We presented an RSA threshold signature scheme
based on Blakley secret sharing. To the best of our
knowledge, this is the first threshold RSA signature
scheme that uses Blakley SSS as the underlying secret
sharing scheme. The scheme is as efficient as Shoup’s
practical threshold RSA signature and can be easily
implemented. Moreover, this approach can be extended
to other public key cryptosystems where the private key
is used in the exponent.
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