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Abstract. Security analysis of block ciphers against linear cryptanalysis
has virtually always been based on the bias estimates obtained by the
Piling-Up Lemma (PUL) method. Despite its common use, and despite
the fact that the independence assumption of the PUL is known not to
hold in practice, accuracy of the PUL method has not been analyzed to
date. In this study, we start with an experimental analysis of the PUL
method. The results on RC5 show that the estimates by the PUL method
can be quite inaccurate for some non-Feistel ciphers. On the other hand,
the tests with SP-structured Feistel ciphers consistently show a much
higher degree of accuracy.

In the second part, we analyze several theories for an alternative method
for bias estimation, including correlation matrices, linear hulls, and sta-
tistical sampling. We show a practical application of the theory of cor-
relation matrices, where better estimates than the PUL method are ob-
tained. We point out certain problems in some current applications of
linear hulls. We show that the sample size required for a reliable statis-
tical estimator is an impractically large amount for most practical cases.

1 Introduction

Estimating the bias of a given linear approximation is one of the most important
problems in linear cryptanalysis: the success rate of a linear attack is directly
related to the bias of the approximation it uses, therefore, security analysis of
block ciphers against linear cryptanalysis is exclusively based on the estimation
of the bias of their linear approximations.

In practice, estimation of the bias is almost exclusively based on the Piling-
Up Lemma (PUL) [11], which is a very practical tool for bias estimation on
iterated block ciphers. To estimate the bias of a multi-round approximation, the
round approximations are assumed independent and the bias of the combined
approximation is calculated by the PUL. We will refer to this application of the
PUL as the PUL method.

In the first part of this study, we analyze the bias estimates obtained by the
PUL method. Although the PUL method has been widely used, and although it
is known that this method’s assumption of independent round approximations
is virtually never true, the accuracy of the estimates obtained by this method



has almost never been the subject of a study.! Our analysis concentrates on
two cases: DES-like SP-structured Feistel ciphers and RC5. The Feistel ciphers
represent the class of ciphers that the PUL method was originally applied on.
RC5 represents a cipher that has a totally different structure (which is based
on a mixture of arithmetic operations and data-dependent rotations, instead of
the traditional substitution and permutation structures). In the study of Feistel
ciphers, we analyze the accuracy of the estimated values with respect to various
factors, including the number of active s-boxes in a round, presence/absence of
a bit expansion function, etc.

The analysis results show that the PUL method gives quite accurate esti-
mates with SP-structured Feistel ciphers, especially for approximations with at
most a single active s-box at each round, as long as the estimated values are
significantly higher than 2=%. With RC5, the estimates turn out to have a much
lesser accuracy.

In the second part of this study, we look for an alternative estimation method
which would give more accurate estimates than the PUL method in general
(e.g., for non-Feistel ciphers, or for large number of rounds where the PUL
method gives too small values). For this purpose, we analyze the theories of
correlation matrices, linear hulls, and statistical sampling. We give an example
application of correlation matrices for bias estimation, which gives consistently
better estimates than the PUL method on RC5. We review the theory of linear
hulls, which has also been used as an alternative technique for bias estimation.
We point out certain problems with some current applications of linear hulls
where the application has no basis in theory. Finally, we look at the prospects of
estimating the bias by statistical techniques over a randomly generated sample
of plaintext/ciphertext blocks. It turns out that the statistical techniques do not
provide any practical solutions for bias estimation, especially when the inverse
square of the bias is an impractically large amount for a sample size.

Notation: Throughout the paper, we use n to denote the block size and r
to denote the number of rounds in an iterated block cipher. K; denotes the ith
round key, L; and R; denote the left and right halves of the round output. p is
used for the probability of an approximation, where |p — 1/2| is the bias. Bits
in a block are numbered from right to left, beginning with 0. The “.” operator
denotes the bitwise dot product.

2 Experiments with RC5

During some linear cryptanalysis experiments with small block sizes of RC5, we
noticed significant differences between the actual bias of a linear approximation
and the values that were estimated by the PUL method. We summarize these
findings in this section.

The RC5 encryption function is:

! One exception in this regard is [2], where the accuracy of PUL estimates was studied
in the specific context of combining two neighbor s-box approximations in DES.



L =Lo+ Ky
R =Ry + K4
fori=2to 2r+1do
Li=R;
R; = ((Li_1 (&} Ri—l) K Ri_1) + K;

The best currently-known linear approximation of RC5 [8] is
Ro[0] & Loy [0] = K1[0] & K3[0] @ - - - & K2r—1[0], (1)

The probability of this approximation is estimated as 1/2+1/2w"~! by the PUL
method where w is the word size in bits (in RC5, half of a block is called a word).

We computed the bias of Approximation (1) by exhaustively going over all
plaintext blocks for various values of w and r. The test results are summarized
in Table 1. The results show quite significant differences between the actual and
the estimated values of the bias. Another remarkable point is that increasing the
number of rounds does not affect the bias after a certain point, and the bias does
not get much smaller than 2=%~!. We further discuss these results in Section 4.

r|Bias |[PUL r||Bias |PUL r|Bias |PUL
5 9-30[5=3 NIRRT 49— 102[5=13
3 2—4.5 2—5 4 2—7.7 2—10 5 2—12.1 2—17
4 275.1 277 5 278.8 2713 6 2714.6 2721
5[[2=53[29 6l =9 T[3-16 7| 2=16:3[3=25
10l 2=53[3= 10 10l 2=92[3= 78 10l 2= T73[3=37
(a) w=4 (b)w=28 (c) w=16

Table 1. Average actual bias of Approximation (1) and the bias estimated by the
PUL for various values of w and r, with 500 randomly chosen keys for each w and 7.
The results show a significant difference between the actual bias values and the PUL
estimates. The difference increases sharply with increasing number of rounds.

3 Experiments with Feistel Ciphers

Following the findings on RC5 described in Section 2, we performed similar tests
with Feistel ciphers, which is the type of cipher the PUL method was originally
used for [11]. In this section, we describe these tests and summarize their results.

3.1 Design

The ciphers used in these experiments are Feistel ciphers with 32-bit block sizes.
The encryption function of a Feistel cipher is of the following form:



for i =1tor do
L;=R;_
Ri=L;—1 ® F(R;_1, K;)

The F function we used in the experiments has a structure similar to that in
DES. Tt has a sequence of key addition, substitution, and permutation stages. In
the key addition stage, R; 1 is XORed by the round key K;, with a possible bit
expansion before the XOR. The Feistel ciphers used in the experiments include
both those with an expansion function E and those without one. In ciphers with
a bit expansion, the expansion function E is the equivalent of the expansion
function in DES, reduced to 16 x 24 bits.

The substitution stage is also similar to that in DES, with four parallel
distinct s-boxes. The s-boxes are either 4 x 4 or 6 x 4, depending on the presence
or absence of the bit expansion. The 4 x 4 s-boxes are chosen from the s-boxes
of Serpent [1], and the 6 x 4 s-boxes are chosen from the s-boxes of DES [6].

The permutation stage uses a 16 x 16 permutation function P to mix the
output bits from the s-boxes. In the Serpent s-boxes, unlike the DES s-boxes [6],
there is no distinction among the role of input bits. So, with the Serpent s-
boxes we use the following simple permutation P which guarantees that each
output bit from an s-box affects a different s-box in the next round: P =
(1511731410621395112840).2 With the DES s-boxes, we use the follow-
ing permutation which guarantees that the output of each s-box has an effect
on two outer bits, two inner non-middle bits, and two middle bits (of different
s-boxes) in the next round: P = (1210361411421597113850).

Notation: Each Feistel cipher used in the tests will be identified by the
presence/absence of the expansion in key addition, and by the numbers of the
s-boxes used (ordered from left to right). For the numbering of the s-boxes, the
numbering in their original ciphers will be used. E.g. FCx£g0214 will denote the
Feistel cipher with no bit expansion and with the Serpent s-boxes Sg, S2, Si,
Sy. FCE8735 will denote the Feistel cipher with the bit expansion E and with
the DES s-boxes Sg, S7, S3, Ss.

We start our experiments with the FC g ciphers which are the simpler case
since there is no issue of duplicate bits. We first look at the approximations with
at most a single active s-box at each round. Then we go to the approximations
with multiple s-boxes in the same round.

3.2 Approximations with Single Active S-box

First, we look at how the PUL method performs on the approximations with
at most a single active s-box at every round, which is the most basic type of
linear approximations of an SP-structured Feistel cipher. We denote the round
approximations in terms of the s-box approximations, as in [11, 12].

We consider the 4-round iterative approximations of the form ABC—-, which
can be combined by itself as ABC-CBA-ABC-..., where A, B and C are some

2 The numbers show the new location of the bits after permutation.



non-trivial approximations of the F' function, and “~” denotes the nil approxi-
mation. This is the form of the approximations which gave the highest bias on
DES [11, 12], and which also gives the highest bias on our FCng ciphers. Here
we present the results for three of our test cases. The results are summarized in
Table 2. The bias is denoted by b.

Case 1.1: Cipher: FCygl1745, A: 4.2 =11-S1(z),b=1/4, B: 8z =8-S7(z),
b=1/8, C:4.2=15-S1(z), b=1/4.

Case 1.2: Cipher: FCyg6530, A: 2.2 =13-S5(z), b=1/4, B: 4.z =4-S3(x),
b=1/8, C:2-2=15Ss(z), b=1/4.

Case 1.3: Cipher: FCyg0214, A: 4.2 =8-Si(z),b=1/8, B:2.x =2-S3(x),
b=1/8, C:4.2=12-Si(z),b=1/8.

r||Bias PUL r||Bias PUL r||Bias PUL
4 275.00 275 4 275.00 275 4 277.00 277
g g~ 900 [9-9 g2 900 [39 Q[ o 1zvy 13
12 2-1296[9-13 12| 9= 1256[5—-13 12| 9= 16755 —19
16/ 2-16513—17 16/ 2-1683[9—17 16/ 2- 1735|925
20 2717..50 2721 20 2717.26 2721 20 2717.84 2751
24 2—17.31 2—25 24 2—18.28 2—25 24 2—17.42 2—37
(a) Case 1.1 (b) Case 1.2 (c) Case 1.3
Table 2. Test results for single sbox approximations. PUL estimates are quite accurate,
as long as they are above 272 71, Like the results on RC5, the bias does not go much
below 272~

3.3 Approximations with Multiple S-box

In this section, we look at how having multiple active s-boxes in the same round
affects the accuracy of PUL estimation. We focus our experiments on approxi-
mations with two s-boxes, because in our miniature ciphers the bias with three
or four active s-boxes drop too fast to draw any useful conclusions.

We work with the 3-round iterative approximations of the form AB—, which
can be combined by itself as AB-BA—-AB-..., where A and B are approximations
of the F' function with two active s-boxes. Three such approximations are given
below. The results are summarized in Table 3.

Case 2.1: Cipher: FCnyg5614, A: (32 = 3:S4(z), b=1/4) AND (3= = 3-S5(x),
b=1/4) B: (9.2 =9-S1(z), b=1/4) AND (9-2 = 9-S4(z), b=1/4)

Case 2.2: Cipher: FCyg4250, A: (10-z = 10- So( ), b=1/4) AND (10-z =
10-S5(x), b=1/4) B: (3-x = 3-S4(x), b =1/4) AND (3-z = 3-Ss5(x), b = 1/4)

Case 2.3: Cipher: FCyg5014, A: (3z =3S4(z),b=1/4 )A D (3z = 3:S5(x),
b=1/4) B: (9.2 =9-S1(z), b=1/4) AND (9-2 = 9-Ss(z), b= 1/4)



r||Bias PUL r||Bias PUL r||Bias PUL
3[[2=500 [9=5 3[[9=5-00 [9=5 3[[9=5-00 [9=5
6la=592 [3=9 6l =590 [5=9 Il g=83T [3=9
o[- 1Zo1[p-13 g[[9=1z90[5=13 g[[2=1z®8[5-13
2= B9 5=17 DI -5 [5=17 DI =69 [5=17
15 2717.48 2721 15 2717.17 2721 15 2717.19 2721
B[[- 20 [g=2 18[[2=T70[5=25 B[[=T7=7[g=25
(a) Case 2.1 (b) Case 2.2 (c) Case 2.3

Table 3. Test results for approximations with two active s-boxes in a round. PUL esti-
mates are somewhat less accurate than those in Table 2 for single-sbox approximations,
but still better than those on RC5.

3.4 Approximations with Expansion

Here we look at the effect of having an expansion function at the key addition
stage. When there is an expansion at the key addition stage like the E function
in DES and our FCg ciphers, an approximation of an s-box not only affects the
input to that active s-box, but also affects the two shared input bits with the
neighbor s-boxes. Therefore, the output of the neighbor s-boxes will also be more
or less affected by an s-box approximation.

We tested the accuracy of the PUL estimates with certain approximations of
the FCg ciphers. The tests are focused on approximations with a single active
s-box at every round, because the bias of approximations with multiple active s-
boxes drops too fast in FCgs. The approximations used in the tests are iterative
approximations of the form ABC-CBA-ABC-... The tested approximations are
listed below, and the results are summarized in Table 4.

Case 3.1: Cipher: FCg5216, A: 16z = 15-S5(z), b= 20/64, B: 8z = 8-5;(x),
b=4/64, C:16-x =14-S5(z), b = 10/64.

Case 3.2: Cipher: FCg8735, A:16-x = 7-S5(z), b =8/64, B: 4.z = 2-Sg(x),
b=2/64, C:16-z = 15-S5(x), b= 20/64.

3.5 Other Approximations

The ciphers and approximations considered in these tests are by no means ex-
haustive, and in fact there are many different Feistel ciphers and approximations
possible. The purpose of the tests is not to exhaustively prove a result about
the bias of Feistel ciphers, but to obtain a general view of the accuracy of PUL
estimation on Feistel ciphers. As we will discuss in Section 4, these results indeed
give a general idea on the subject.



r||Bias PUL r| Bias PUL
4 2—6.36 2—6.36 4 2—7.68 2—7.68
8 2—11.71 2—11.71 8 2—14.40 2—14.36
12 2—16.74 2—17.06 12 2—17.26 2—21.03
16 2—17.31 2—22.42 16 2—17.70 2—27.71
20 2717.62 2727.78 20 2717.47 27&4.59

(a) Case 3.1 (b) Case 3.2

Table 4. Test results for single-sbox approximations with the expansion E. PUL esti-
mates are slightly less accurate than those without E, given in Table 2.

4 Discussion on the Results

The test results on Feistel ciphers show that the PUL method is quite effective
for bias estimation with SP-structured Feistel ciphers, as long as the estimated
values are significantly higher than 275 . The results are best when there is at
most a single active s-box in each round approximation, and when there is no bit
expansion. When there are more affected s-boxes in a round approximation, the
number of bits affected by the approximation increases, and so does the effect
it has on the following round approximations (i.e. dependence among round
approximations).

The test results on RC5 show that accuracy of the PUL estimates may not
be so good with ciphers that are not SP-structured Feistel ciphers. In the test
results with RC5, there is a considerable difference between the estimated and
actual values even for smaller number of rounds. With larger number of rounds,
the bias may be significantly higher than 273 even after the estimated values
become lower than 2~ %. We can say, looking at the test results, that larger
differences should be expected in practice with larger block sizes (i.e. with 64-
and 128-bit blocks).

It is not easy to explain the difference in the accuracy of the estimates with
RC5 and with Feistel ciphers: The source of inaccuracy of a PUL estimate is
the dependence between round approximations, which is a factor that has to be
neglected by the PUL method by its very definition. Both the RC5 round ap-
proximations and the single-sbox FCyg round approximations affect (i.e., give
information on) 4 out of 16 bits of R;_;. Moreover, in the FC y g approximations,
there are three non-trivial round approximations in every four rounds, whereas
in the RC5 approximation there are only two non-trivial approximations in four
(half)rounds. So, it would be natural to expect that there would be more depen-
dence and interaction among the FC g round approximations, which turns out
not to be the case. For now, we accept the accuracy of the PUL estimates on
Feistel ciphers as an experimental result and do not go into an in-depth analysis
of the factors underlying it.



Similarly, we cannot give a simple explanation for why the actual and the
estimated bias values for the Feistel ciphers go so closely until they reach the 2~ %
threshold, and become so divergent after that point. It is not possible to simply
explain this with the accumulation of the dependence affect with more rounds,
since a comparison of the test results with low-bias and high-bias approximations
suggests that the point where the actual and the estimated values diverge is not
determined by the number of rounds, but is mostly determined by the proximity
to the 2~ % threshold.

4.1 Stabilization of the Bias

Here we give two theorems related to the stabilization of the bias around 272 71,

Although the theorems do not explain how the sharp change in accuracy of PUL
estimates at 27 % is related to the dependence between round approximations,
they provide some important facts about the stabilization of the bias. The first
theorem gives a lower bound for the bias of the best approximation. The second
theorem suggests that when the bias of the best approximation approaches the
theoretical lower bound, the bias of almost all linear approximations of the cipher
should be around 273 ~!. The first theorem follows from Theorem 4 in [4] with
p = q = n (see Appendix A). The second theorem is observed in the proof of
that theorem. Fj is an n-bit block cipher with key K = k; p, denotes the
probability of the approximation a-X @ b-F(X) = 0.3
n41

Theorem 1. 3 a,b € {0,1}", such that |pap — 1/2| > 2772 .

Theorem 2. 3, ,ccq 13n [Pa — 1/2)2 = 2n—2,

5 Alternative Methods for Bias Estimation

In this section, we analyze several theories for an alternative method for bias
estimation, including correlation matrices, linear hulls and statistical sampling.

5.1 Correlation Matrices

For a function f : {0,1}™ — {0,1}", the correlation matriz C) is a 2™ x 2™
matrix whose (b,a)th entry c,()ﬁ) is the correlation coefficient 2Px(a-X = b-
F(X)) = 1[7]. The relationship between the correlation coefficients and the bias
is straightforward: If F}, is a block cipher with key K = k, bias of a- X ®b-F,(X) =
d-K (for any d) equals |c,()f’“)|/2. For f:{0,1}* — {0,1}™, ¢ : {0,1}™ — {0, 1},
we have C(@0°f) = C@) % C(H). So, if F}, is an iterative cipher and f; is the ith
round with its respective round key, we have C(F%) = [T, C9). Then cg’“)
equals >, . (Ilixy cg{il)i_l) where ag = a, a, = b, and each [];_, )

3 The bias does not depend on the key mask here, because the key is a fixed parameter
(which is also the case in a linear attack).



is known as the correlation contribution coefficient (CCC) of the linear trail
ag —> ap — ... —> Qp.

So, the theory of correlation matrices tells that the bias of a linear approx-
imation is equal to the sum of the PUL biases (without absolute value) of all
linear trails that lead to the given approximation. Hence, correlation matrices
provide a generalization of the PUL method: Instead of using the PUL bias of
a single linear trail, the bias can be estimated by summing up the PUL bias of
as many linear trails as possible which lead to the given approximation. We will
refer to this generalization of the PUL method as the CM method.

An Example Application: As an example, we apply the CM method to our
RC5 approximation (1). All effective RC5 approximations obtained so far [8, 9,
16, 3] are based on round approximations with a single active input and output
bit. To be expandable over multiple rounds, the 1-bit round approximations
should be of the form R;[m;] ® L;—1[m}] = Si[m;] & ¢ where m;,m} < lgw and
¢ is a constant. These approximations are analyzed in detail by Borst et al. [3].
Probability of the 1-round approximation

Ri[m;] ® Li—1[m;] = Si[mi] © (m; — mg)[my],

where (m; — m})[m}] denotes the mith bit of (m; — m}) mod w, is equal to

% + % (% - L), where s denotes S; mod 2™:. Hence, the correlation coefficient

2m;
of Ri[m;] = Li_1[m}] is equal to (=1)°L (1 — =5-), where § = Sj[m;] & (m; —

!

m})[m}]. The 1-bit trails that lead to Approximation (1) are those which satisfy,
my =0,
m; =mj, ., <lgw, fori=3,5,...,2r -3,
Mar—1 = 0.

We computed the bias by adding up the correlation contribution coefficients of
all 1-bit linear trails of this form. The results are given in Figure 1 and are
compared to the actual bias and the PUL estimate values.

Bias .;3 Ao ——
r ||Actual|PUL| CM a5 % POL
22" v 2t .
4 2—10.4 2—13 2—12.2 Eﬂ 22
6l - 1a6[g—2T[g-19.2 > .
8 2717.2 2729 2726.2 ; .
10 2_173 2_37 2_33-3 7552 4 6 8 10 12 14

Fig. 1. Comparison of the CM, PUL and actual bias values for w = 16 over the
key sample used in Table 1. The CM estimates are consistently better than the PUL
estimates. But their accuracy too drops exponentially with the number of rounds.

We would like to note that this example application on RC5 is intended to
illustrate the practical usage of the theory of correlation matrices; it does not



show the limits of the theory. In fact, it is possible to obtain better estimates
than those given in Figure 1 by including multiple-bit trails in bias estimation as
well as the single-bit trails. But eventually the accuracy of the estimates should
be expected to drop with the increasing number of rounds, since the number of
trails that can be considered in bias estimation can be no more than a certain
tractable number; but the number of all trails that contribute to the bias of an
approximation increases exponentially with the number of rounds.

5.2 Linear Hulls and Correlation Matrices

Like correlation matrices, linear hulls [14] can also be used to combine the bias
of linear trails. But unlike correlation matrices, this kind of application of linear
hulls is proven specifically for DES-like ciphers*. In fact, in the Fundamental The-
orem of Linear Hulls (see Appendix B), the summation for the average squared
bias is over different key masks, not over linear trails. But since in a DES-like
cipher there is a one-to-one correspondence between a linear trail and a key
mask, the summation can be transformed into a summation over linear trails
(see Theorem 2 in [14]).5 However, this argument is not equally applicable to all
ciphers. For example, for the addition operation X =Y + K, the input and out-
put masks for the round are not uniquely determined by the key mask; i.e., for
a given ¢; > 1, there are many values of a; and b; such that the approximation
a;-X = b;-Y + ¢;- K has a non-zero bias. So, for example in RC5, there may be
many linear trails corresponding to the same key mask c.

In short, we would like to point out that the application of linear hulls to
combine bias from linear trails has been proven specifically for DES-like ciphers,
and it should not be used with arbitrary ciphers unless a proof is given for that
application. In this respect, certain bias studies with linear hulls (e.g. [3, 5]) have
no theoretical basis.®

Another confusion with the application of linear hulls is that, linear hulls
are often taken as the exact analog of differentials in differential cryptanalysis;
ie., it is assumed that |bias| = 3 7,y [PUL bias| where 37; 7, ;) denotes
the summation over all linear trails with plaintext mask a, ciphertext mask b.
Obviously, this equation has no basis in the theory of linear hulls.” A similar
but correct equation is the one given by correlation matrices where bias is taken
without absolute value; bias = 1 7,y (PUL bias). So, even though it is wrong
to use Y ;7. [PUL bias| for bias estimation, it can be used as an upper-
bound for bias in analyzing the security of a cipher against linear cryptanalysis.

4 For a formal definition of DES-like ciphers for linear hulls, see [14, 13].

% This theorem on combining the squared bias of linear trails in a DES-like cipher
is recently given an alternative proof by Nyberg [15], which is based on correlation
matrices rather than linear hulls.

6 A mid-solution for these applications can be possible if each trail used in bias esti-
mation can be shown to match a different key mask.

" Simply note that every equation in linear hulls is in terms of squared bias rather
than the bias itself.



However, the correct reference for this kind of application should be correlation
matrices rather than linear hulls.

5.3 Estimation by Sampling

To estimate a parameter of a population where the population is too large to
count every member, a random sample from the population can be used to
estimate the desired parameter. For a typical block cipher size (e.g. 64 or 128
bits), there are too many plaintext/ciphertext blocks to calculate the actual
bias by going over every block; so, a random sample of blocks can be used to
estimate the bias. Here we look at a number of alternative statistical estimators
for estimating the bias over a random sample of plaintext blocks. Throughout
this section, N is the sample size, T' is the number of ciphertexts in the sample
satisfying the approximation. E[.] denotes the expected value, Var[.] denotes
the variance, 6 denotes the bias |p — 1/2|. § is used for estimators for 8. MSE
denotes the mean squared error, E[(§ — 6)?].

The UMVUE: One of the most important point estimators in statistics is the
uniform minimum variance unbiased estimator (UMVUE), which is the (unique)
unbiased estimator that has the minimum variance among all unbiased esti-
mators, under all values of the parameter to be estimated [10]. Regarding the
UMVUE, we prove the following negative result:

Theorem 3. No unbiased estimator ezists for |p—1/2| over a random plaintext
sample.

Proof. T is binomially distributed. Assume éN(T) is an unbiased estimator®:

N
BloN] = 3 () (3 )= 9T = =172, @
T=0

for all 0 < p < 1. Now, define p = p/(1 —p) so that p = p/(1 + p) and
1—-p=1/(1+p). For 1/2 < p < 1, Equation (2) becomes

Ti_oéw) (7)r" =+ -12= Tﬁ(@’ - (5 e

1 < p < 00. A comparison of the coefficients of pT on the left and right sides leads
to On(T) = T/N — 1/2. Similarly, for p < 1/2 we obtain 65(T) = 1/2—T/N.
Obviously, n cannot satisfy both of these equations. O

Corollary 1. The UMVUE does not exists for [p —1/2|.

8 We can denote the estimator as a function of T since 7T is a sufficient statistics [10]
for [p —1/2|.



The Sample Bias: It may seem like a good idea to use the sample bias |T/N —
1/2| as an estimator for the actual bias [p—1/2|. In this section we show that the
sample bias cannot be used to estimate the bias when the sample size is much
smaller than |p — 1/2|72.

T /N —1/2 approximately follows a normal distribution with mean p = p—1/2
and variance 02 = p(1 —p)/N ~ 1/4N. For § = |T/N —1/2], it can be shown

E[f] = |u|(1 — 28(—|ul/0)) +20¢(|u|/o)
Varlf] = p® + o — E[6)?

MSE@®) = E[(6 - 6)*] = Var[d] + (E[6] — |u)*
=07 + 4|ul*®(—|ul/o) — 4uod(|ul/o)

where ¢ and @ denote respectively the probability density function and the
cumulative distribution function for the standard normal distribution. As it can
be seen from Figure 2, to have the standard error vV M SFE at least comparable to
|[p—1/2], a sample size comparable to [p—1/2|~2 will be needed. Therefore, when
|[p—1/2|72 is an intractably large number (which should be the case for a secure
cipher), it will not be possible to obtain a reliable estimator from |T/N — 1/2]
with any practical sample size.?

e 7

Fig. 2. Standard error rate vs. |u|/o, for § = |T/N —1/2|. It converges to 1/(|u|/o) in
both directions. Sample size for a desired error rate VM SE/6 < e can be computed
from |p|/o = |p—1/2|V/AN > 1/e, hence N > 45%|p —1/2|72.

If a sample size much smaller than |p—1/2|~2 is used, then E[§] ~ 1/v27N,
independent of |p—1/2|. As an example, Table 5 gives the results of a computa-
tion of the sample bias of the RC5 approximation (1) for w = 32 with N = 107

plaintexts. For this sample size, we have 1/v27107 = 27129 which explains
the stabilization of the bias around 2713.

® This sample size requirement should not be confused with the similar plaintext
requirement for an attack.



T 2 4 6 8 10 12
Bias| 2 0] 9 24| 9 130] 5 130 5 12:9] 5130

Table 5. Average sample bias of the RC5 approximation (1) for w = 32 with 107
plaintexts, on 500 randomly chosen keys for each r. The results show an alarmingly
high bias for a 64-bit block cipher.

The MLE: Another important point estimator in statistics is the maximum
likelihood estimator (MLE). The MLE for |p — 1/2| would be the value 6* that
maximizes the likelihood function

N [@2=0T240N T+ 1/2-0)N"T1/2+6)T, f6#0
20 ={ (. to—o

Unfortunately, there is no easy way to compute 6. Nevertheless, we can obtain
a bound on the reliability of the MLE by assuming availability of some extra
information, such as whether or not p > 1/2. If we know p > 1/2, then

g [0 if T < N/2
| T/N —1/2, otherwise

and vice versa for p < 1/2; which is not any more reliable than the sample bias.

6 Conclusions

Looking at the tests summarized in this paper, we conclude that the PUL method
gives quite accurate estimates with SP-structured Feistel ciphers, especially for
approximations with a single active s-box per round. With increasing number
of rounds, the actual bias values follow the PUL estimates quite closely until
the PUL estimates become much less than 2~ %. After that point the actual bias
remains stabilized around 2~ %! and does not get much lower.

The experiments on RC5 show that the performance of the PUL method may
not be as good with other kinds of ciphers. In the case of the RC5 approxima-
tion tested, there is a considerable difference between the estimated and actual
values even for small number of rounds. At certain cases, the bias is significantly
higher than 2~ % even after the estimated values become lower than 2~ %. The
inaccuracy of the PUL estimates increases with larger block sizes, so even greater
differences between actual and estimated values should be expected with 64- and
128-bit blocks.

We analyzed several other techniques for an alternative estimation method
that would give more accurate estimates than the PUL method in general. Our
attempts to obtain good estimators by statistical techniques from a random
sample of plaintext blocks did not provide any useful results, especially when
the inverse square of the bias is an impractically large amount for a sample size.

The theory of correlation matrices provides some opportunities for an alter-
native estimation method. By this theory, it may be possible to obtain improve-
ments over the PUL method by using more than a single trail for bias estimation.



We gave an example of such an application on RC5. The method gave some im-
provements over the PUL method. But eventually its estimates also fell far from
the actual bias values with increasing number of rounds. The main reason for
this deviation is that the number of trails that can be considered in bias esti-
mation can be no more than a certain tractable number; but the number of all
trails that contribute to the bias of an approximation increases exponentially
with the number of rounds.

Another theory used as an alternative method for bias estimation is the
theory of linear hulls. In Section 5.2, we pointed out some problems with the
current applications of this theory. The main problem with the current practice
is that, the theoretical results on linear hulls regarding combining the bias of
different linear trails is proven only for DES-like ciphers, whereas in practice
these results are used for different kinds of ciphers (e.g., RC5, RC6, SAFER).

We conclude that the PUL method is quite an effective method for bias
estimation with SP-structured Feistel ciphers, especially for approximations with
at most one active s-box at each round and with a bias considerably higher than
2~%. It is an open problem to find an equally effective method for non-Feistel
ciphers and for the ciphers with too many rounds for the PUL method to give a
meaningful value.
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Chabaud-Vaudenay Theorem on Max. Non-Linearity

Theorem 4 (in Chabaud-Vaudenay [4]) For K = {0,1} and F : K? - K1,

where Ap = maxp£o,4| [{x € KP : a-x ®b-F(z) =0} —

B

O [ 1))1/2

1
> = ?»_9_9
AF—2<3X 20— 1

K|
S

Fundamental Theorem of Linear Hulls

Theorem 1 (in Nyberg [14]) For X € {0,1}™, K € {0,1}¢, F : {0,1}™ x

{0,

1}¢ = {0,1}", if X and K are independent random variables, and K is

uniformly distributed, then for all a € {0,1}™, b€ {0,1}"

1
9-¢ Z |PX(G-XGBb-F(X,k):(])_§|2 _

ke{0,1}¢
1
Z |Px.x(a- X®b-F(X,K)®c-K=0)— 5|2
ce{0,1}*

During a linear attack, the key K is a fixed parameter, so the bias of interest

is the bias on the left side of the equation; i.e., |Px(a-X ®b-F(X, k) = 0) — |.1°
The summation on the right is the squared bias with a random-variable key, over

all

key masks ¢. For DES-like ciphers, this right-hand side summation can be

turned into a summation of the PUL bias over linear trails (Theorem 2 in [14]).

10 The key mask does not matter here since the key is fixed.



