
A Reputation-Based Trust Management System for P2P Networks

Ali Aydın Selçuk Ersin Uzun Mark Reşat Pariente

Department of Computer Engineering
Bilkent University

Ankara, 06800, Turkey
E-mail: selcuk@cs.bilkent.edu.tr, {euzun,resat}@ug.bilkent.edu.tr

Abstract

The open and anonymous nature of a P2P network makes
it an ideal medium for attackers to spread malicious con-
tent. In this paper, we describe a reputation-based trust
management protocol for P2P networks where users rate
the reliability of parties they deal with, and share this in-
formation with their peers. The protocol helps establishing
trust among good peers as well as identifying the malicious
ones.

Results of various simulation experiments show that the
proposed system can be highly effective in preventing the
spread of malicious content in P2P networks.

1 Introduction

A peer-to-peer (P2P) network is a computer network that
does not have fixed clients and servers but a number of peer
nodes that function as both clients and servers to the other
nodes in the network. Although in general any networking
technology that uses this model can be considered as P2P,
such as the NNTP protocol used for transferring Usenet
news or a wireless ad hoc network, the term is most fre-
quently used to refer to file sharing networks over the Inter-
net, such as Gnutella, FastTrack, and Napster. In this paper,
we also focus on P2P file sharing systems and use the term
“P2P” mostly to refer to this particular application of the
more general concept.

By the nature of its architecture, a P2P file sharing sys-
tem provides an open, unrestricted environment for content
sharing. However, this openness also makes it an ideal en-
vironment for attackers to spread malicious content such as
the VBS.Gnutella worm [11].

Reputation-based systems are used to establish trust
among members of on-line communities where parties with
no prior knowledge of each other use the feedback from
their peers to assess the trustworthiness of the peers in the
community [9]. One well-known such system is the rating

scheme used by the eBay on-line auction site [5].
In this paper, we propose a reputation-based, distributed

trust architecture for P2P networks to identify malicious
peers and to prevent the spreading of malicious content. The
protocol is based on the query-response architecture of the
first generation P2P networks and is suitable for operation
in a Gnutella- or Kazaa-like system.

The protocol we propose is described in Sections 2– 4.
Results of the simulation experiments testing the protocol’s
effectiveness are presented in Section 5. Earlier protocols
with a similar scope and their differences from our proposal
are discussed in Section 6. Section 7 concludes the paper
with a discussion of the future work necessary for a practi-
cal deployment of our protocol.

2 The Basic Protocol

A query in a P2P file sharing system can return many dif-
ferent versions of the queried resource, among which some
may be malicious. The aim of our protocol is to distinguish
the malicious responses from benign ones by using the rep-
utation of the peers providing them. Since in P2P networks
a central server is typically not available, our protocol relies
on the P2P infrastructure to obtain the necessary reputation
information when it is not locally available at the querying
peer.

In this section, we give a high-level description of the
basic protocol. The rationale for the design is discussed in
Section 3. The security extensions on the basic protocol are
described in Section 4. Some relatively insignificant tech-
nical details which could not be included in this paper due
to the space limitations can be found in the full technical
report [10].

2.1 Trust Records and Ratings

In our system, the outcomes of past transactions are
stored in trust vectors, maintained by the peers that make
the download. Every peer maintains a trust vector for every
other peer it has dealt with in the past.

Trust vectors are constant-length, binary vectors of ` bits,
where ` is typically 8, 16, or 32. A 1 bit represents an hon-
est transaction, a 0 represents a dishonest one. An integer
variable accompanies each vector, specifying the number of
significant bits in it. The result of a new transaction is writ-
ten at the most significant bit, shifting the present bits to the
right. The process is illustrated in Figure 1.

Trust vector: 11010000
of significant bits: 4

-

genuine download
from B Trust vector: 11101000

of significant bits: 5

Figure 1: Peer A’s update of its trust vector on B after an honest
transaction. In this example ` = 8.

A trust vector with m significant bits is read as an m-bit
integer and divided by 2m for conversion into a scalar trust
rating in the [0, 1) interval.1 A separate distrust rating is
also computed from the complement of the trust vector, for
reasons explained in Section 3. An example computation of
the trust and distrust ratings is shown in Figure 2

Trust vector: 11101000
of significant bits: 5 =⇒

Trust rating = (11101000)2
25 = 0.90625

Distrust rating = (00010000)2
25 = 0.0625

Figure 2: Computation of the trust and distrust ratings from the
trust vector.

2.2 The Trust Evaluation Function

The responses to a resource query are grouped according
to the file hashes provided. Let G denote a group of peers
that provide a certain version of the file, say fG. The trust
coefficient of fG is calculated as the average of the trust
ratings of the top θT most trusted peers in G, where θT is the
threshold specifying the number of peers to be considered
in a version’s trust calculation.

If local trust information is available for fewer than θT

peers in G, denoted by known(G), then a trust query is
issued for randomly selected θT − |known(G)| unknown
peers in G.

2.3 The Trust Query Process

The trust query process is similar to the file query process
except that the subject of the query is a peer about whom
trust information is inquired. The responses include the
trust and distrust ratings the responders have on the queried
subject.

1Here, the use of 2
m as the divisor instead of 2

m
− 1 enables dis-

tinguishing among the straight-1 trust vectors according to the length m,
favoring longer all-honest histories over shorter ones.

The responses are sorted and weighted by the credibil-
ity rating of the responders. Credibility ratings are derived
from the credibility vectors maintained by the local peer,
which are similar to the trust vectors: A 0 in a credibility
vector shows a failed judgment from that peer in the past, a
1 shows a successful one.

The threshold θC specifies the number of responses to
be evaluated for each trust query. The queried trust rat-
ing is the average of the evaluated trust ratings, weighted
by the credibility of their senders. That is, if peer A is-
sued a trust query on peer B, and the responses of peers
R1, R2, . . . , Rk, k ≤ θC , qualify for consideration, and A’s
credibility rating for Ri is ci and Ri’s trust rating for B is
ti, then A’s queried trust score on B is

∑k

i=1 citi
k

.

The queried distrust rating is calculated in the same fashion,
using the respondents’ distrust ratings of B.

2.4 Update of Trust and Credibility Ratings

After the file download is complete, a user is asked to
judge the file as benign or malicious. If it is rated benign,
the trust rating of the peer(s) from whom the file is down-
loaded is upgraded. Otherwise, the rating of the peer who
sent the malicious content and the rating of those who con-
tributed to its selection are downgraded. The difference be-
tween the two cases is due to the following fact: A mali-
cious peer may well offer a right hash during a query in the
hope of being selected and, if selected, sends the malicious
content. Therefore, merely a reference for a good file is not
sufficient for upgrade of the trust rating. On the other hand,
if a downloaded file turns out to be malicious, all peers who
offered that file can be assumed to be malicious.

The update of the credibility ratings is slightly more
complex: The rating of a peer who expressed an opinion
on a queried peer is updated only if the queried peer’s trust
rating is updated as a result of the download. A credit rating
update’s direction (i.e., its being negative or positive) is de-
termined according to the opinion given and the direction of
the trust rating that is updated: If a peer’s trust rating is up-
graded and some peer gave a positive opinion on that peer,
or if both the trust rating update and the opinion were neg-
ative, then the credibility of the referring peer is upgraded.
Otherwise, it is downgraded.

Another important point here is how an opinion is classi-
fied as “positive” or “negative”. Since the distrust rating has
priority in evaluation over the trust rating, an opinion with
a non-zero distrust rating is considered a negative one. An
opinion with a positive trust rating with zero distrust on the
other hand, which implies a trust rating of 0.5 or higher, is
considered a positive opinion.

Figure 3: An illustration of the trust evaluation protocol. In response to a file query, three different replies are received among which the
querier is interested in the first two. A trust comparison among these two versions follows. In this process, sufficient information is not
available locally on the providers of the second version. Hence, a trust query is issued for peer x4. At the end of the calculations, the first
version turns out to be the one with a better trust score and will be downloaded from some subset of the peers x1, x2, x3.

The operation of our basic protocol is illustrated in Fig-
ure 3.

3 Design Rationale

The idea of using the feedback from other peers to as-
sess the trustworthiness of a resource/peer is a fundamental
characteristic of reputation systems [9]. In our protocol, this
process is carried out in a distributed fashion due to the lack

of a centralized server in P2P systems in general.

In our trust rating calculations, opinions of peers are
weighted by their credibility. Moreover, the evaluation is re-
stricted to a few (θT or θC) most trusted responses. This has
the purpose of preventing some low-trust responses discred-
iting a reliable resource/peer supported by sufficiently many
trusted peers, as well as limiting the number of responses to
be authenticated, which, unless restricted in number, can be
a performance bottleneck.

A special feature of our trust evaluation function is the
separate treatment of the distrust ratings. Although both
the trust and distrust ratings are derived from the same trust
vectors, handling the distrust ratings separately has the ad-
ditional feature of not letting a dishonest dealing be erased
easily by a few honest transactions, which closely models
real-life trust relations where a single dishonest transaction
in someone’s history is a more significant indicator than
several honest transactions.

An important factor to be considered in reputation-based
systems is temporal adaptivity; that is the ability to respond
rapidly to changing behavioral patterns. Our trust rating
design with binary vectors makes an efficient exponential
aging scheme with an aging factor of 0.5. Moreover, imple-
menting the aging scheme by fixed-length registers rather
than floating point arithmetic has the desirable feature of
enabling peers to cleanse their history by doing a reason-
able amount of community service after a bad deed. Note
that this service must be done to the same person who was
cheated, and hence a bad transaction on record will take
some time to be erased completely, proportional to `.

Once the file version to be downloaded is decided, the
peer to download it from is selected randomly among those
who offered that version, not considering the trust ratings.
This way of selection has the desirable feature of enabling
new peers to build a reputation as well as not overloading
the trusted peers.

Another important design decision was to use a credi-
bility rating system separate from the trust ratings. The
main risk of using the trust ratings for credibility evalua-
tion comes from coordinated attacks where some malicious
peers do as much faithful public service as they can and
build a strong reputation, and then use their credibility for
supporting others who spread malicious content. Having
separate trust and credibility rating systems preclude such
attacks.

4 Security Extensions

In the section, we discuss extensions on the basic pro-
tocol to provide secure and reliable trust information in the
presence of active attackers.

4.1 Key Management

Our system makes use of digital signatures for authen-
tication of critical messages. The core trust issue in public
key systems is to ascertain that a public key received on-line
indeed belongs to the claimed party. The classical solution
to this problem is by trusted certification authorities, but this
may not be an option in a P2P system due to its decentral-
ized nature. In pseudonym-based systems, however, includ-
ing most P2P systems, the question is to bind the public

keys to pseudonyms, not to real-life identities. Hence, a nat-
ural solution is to make the pseudonym and the public key of
an entity the same thing. That is, in an RSA-based system
for example, the public exponent-modulus pair (e, n) can
be taken as the pseudonym of the entity using it.2 In such a
system, there will be no question of the public key’s authen-
ticity when the trust information from a certain pseudonym
is to be verified.

4.2 Authentication

In order to be a reliable source of information, the re-
sponses to be used in trust evaluation must be authenti-
cated. In our protocol, this is obtained by signing the hash
of the responses provided. For protection against replay and
cut-and-paste attacks, the signed hash covers, among other
fields, the ID of the querying and responding peers, a query
ID number, and the file hash being offered.

4.3 Denial of Service Protection

The requirement of responding to every relevant query
with a digital signature is likely to be an excessive burden
on the peers. Moreover, it can easily be exploited for de-
nial of service attacks by attackers continually issuing many
high-match queries. To protect against this threat, a puzzle
scheme is used adding an extra round to the protocol: In the
initial response, the file hash is sent without any signature.
Instead, the responding peer includes a puzzle to be solved
by the querier, such as finding a string whose MD5 output
matches a certain value [2], which should be answered cor-
rectly before a signature is issued. Then the querying peer
decides on which file versions he is genuinely interested in
and solves the puzzles of a limited number of the respon-
dents for each version.

4.4 Avoiding Fake File Downloads

Another avenue of attack for sending malicious files is to
provide the hash of a benign file during the query-response
process but, if selected as the download source, to send the
malicious file during the download. Such attacks can be de-
tected if the hash of a downloaded file is checked before
opening. However, the time and bandwidth of the down-
loader would be wasted, which is exactly the purpose of
certain attacks such as the “decoy files” [3].

A more effective protection is to compare the hash of the
blocks of the file while the download is in progress. Merkle
hash trees [8] provide a solution of this sort. An alterna-
tive hash scheme is also possible that is more suitable for
our protocol. In this alternative scheme, the hash of a file is

2If the pseudonyms are desired to be of uniform length such as an ID
number, a one-way hash of the public key can be used.

computed in two stages: First, the file is divided into seg-
ments of a certain size and the hash of each segment is com-
puted separately; then the hash of the file is computed as the
hash of these segment hashes. The only computational over-
head of this method is the extra hash computation over the
segment hashes, which would be insignificant given that the
segments sizes are reasonably large. We believe that a seg-
ment size in the 100KB–1MB range is a reasonable choice
for most P2P networks.

Our trust evaluation protocol can be made to work with
this new hashing scheme by a simple modification: Once
the file version for download is selected, the querier con-
tacts one of the peers who provided the selected hash and
requests the detailed hash of the file. Upon receiving the
response and verifying its correctness, the peer proceeds to
download the file, possibly from multiple sources. During
the download, the hash is checked after every downloaded
segment and the connection is canceled if a mismatch oc-
curs.

Note that if an attacker sends the fake segment later in the
download to delay detection, the benign segments down-
loaded until that point can be used without any problem,
saving the time and bandwidth spent.

4.5 The Problem of Free Riders

A problem with a quite different theme but which may
nevertheless benefit from our architecture is the problem of
“free riders”; that is, the peers who use the P2P system only
to download content but do not serve to other peers. Many
users of Kazaa-like file sharing systems use the system as
free riders. To tackle this problem and to discourage free
riding, some systems determine the priority of the service
reception of a peer according to the amount of service the
peer has provided in the past. However, this service infor-
mation is typically provided by the software of the client
peer, which is easily hacked to always send the highest pos-
sible value. Recently, reputation-based solutions are being
proposed to overcome this problem (e.g., [6]).

Our trust record system provides a natural infrastructure
that can be used for evaluating the service level of the peers:
At the time of a download, the priority of the download is
determined according to the number of 1s in the trust vec-
tor the server peer maintains for the client peer. When the
local information is insufficient, a trust query can be issued
and a “service score” can be calculated from some top few
responses. Here, unlike in the trust score calculation, the
ranking of the responses should not be based solely on the
credibility of the sources—since the most credible respon-
dents may have not received any service from the client
peer. Instead, a combination of the credibility ratings and
the provided service scores should be used.

5 Simulation Experiments

We tested the performance of our protocol with simula-
tions on various attack scenarios. Although it is not possi-
ble to exhaust all potential attack types, testing the protocol
with a variety of attacks gives an idea on the effectiveness
of the protocol. The types of attackers considered in the
simulations are,

• naive, who responds to every query with a malicious
version of the requested file

• hypocritical, who acts like a reliable peer most of the
time but occasionally tries to send a malicious file

• collaborative, who collaborate with each other in trust
queries, expressing a positive opinion for malicious
peers and a negative opinion for others

• pseudospoofing, who change their pseudonym period-
ically to escape recognition—these attackers are the
hardest to detect and their prevention is possible only
after honest peers build a sufficient level of trust among
themselves.

The simulated P2P networks operate with a Gnutella-like
decentralized routing structure. Every peer is linked to a
certain number of neighbors, and a query message issued by
a peer is propagated over these links for a certain number of
hops specified by the TTL. The simulations are run with the
following common parameters:

number of peers: 1000
number of distinct files: 1000

number of files each peer initially holds: 10
number of links per peer: 3

TTL: 3
ratio of malicious peers: 1–10%

Here, the number of peers and files in the network are deter-
mined according to the capacity of our system. The number
of connections per peer and the TTL are chosen to make the
area covered by a peer’s reachable neighborhood a reason-
able fraction of the whole network—about 2% in this case.
10% malicious ratio represents a high concentration of ma-
licious peers, whereas 1% is the scenario that is probably
closer to a real-life situation.

In a simulation run, regular users make file requests pe-
riodically, according to a uniform distribution. If the re-
quested file is available locally, no further action is taken.
Otherwise, a resource query message is issued, and the pro-
tocol proceeds as described in Section 2. Malicious peers
may also issue file queries, basically for obtaining genuine
files to be used for confidence building. Malicious peers are
limited to their databases to send genuine file responses, but

they are free to respond to any query maliciously. Through-
out the simulations, we take θT = θC , denoted by θ. The
inter-query time, or iqt, is the average time between two
consecutive file queries of a peer and is used as the basic
unit of the simulation time.

It has been observed that the user behavior in P2P file
sharing systems show a Zipf-like distribution where users
can be grouped into several categories according to their in-
terests, and within each category there are a few highly pop-
ular files along with a large number of less popular ones [7].
Our simulations can be expected to give better results when
run with a Zipf distribution since positive correlation among
users’ behavior would result in a more rapid trust establish-
ment among the users in the same category. We preferred
to stick to the uniform distribution which favors our proto-
col the least, since the file requests in a uniform distribution
can come from anywhere in the domain and in our system
it is only the attackers who are able to respond to all queries
unrestrictedly.

5.1 Simulation Results

Results of our simulations are shown in Figure 4, where
the performance metric used is

Φ1: Ratio of malicious to all downloads.

The main characteristics demonstrated by the experiments
can be summarized as follows:

• The protocol is quite effective in preventing the ma-
licious downloads, and can reduce it to zero within a
short time depending on the sophistication of the at-
tackers.

• A large degree of protection can be obtained by just
evaluating one most trusted response, i.e., θ = 1. Set-
ting θ = 2 helps against sophisticated attackers. The
gain from θ > 2 appears to be negligible.

• The protocol is similarly effective for both 1% and
10% malicious peer density.

In Figure 4, we have θ = 2, ` = 32. More extensive results
with different performance metrics and different values of θ
and ` can be found in the full technical report [10].

6 Comparison to Related Earlier Work

A number of protocols have been proposed recently for
reputation-based trust management in P2P systems. In this
section, we discuss them briefly in comparison to our pro-
tocol.

One of the earliest works in this area is the protocol
by Aberer and Despotovic [1] which aims to identify dis-
honest peers by a complaint-based system. A shortcoming

of this protocol is that it maintains only the negative feed-
backs, providing no means for a trustworthy peer to be dis-
tinguished from a newcomer. The trust evaluation is also
rather simplistic, classifying every peer either as trustwor-
thy or untrustworthy. Moreover, maintenance of a “P-Grid”
architecture is required on top of the existing P2P structure.

Another protocol is the EigenTrust scheme proposed by
Kamvar et al. [7], which evaluates the trust information pro-
vided by peers according to their trustworthiness (i.e., using
the trust ratings for credibility). The core of the protocol is
a special normalization process where the trust ratings held
by a peer are normalized to have their sum equal to 1. Al-
though it has some interesting properties, this normalization
may result in the loss of important trust information. E.g., if
there are n identical trust ratings in the database, their nor-
malized value will be 1/n, whether the originals were the
highest or the lowest possible value.

Another proposal with a similar scope is the protocol of
Damiani et al. [4], which assesses the trustability of a file
to be downloaded by “voting” of the peers. The protocol
makes no distinction between the votes from trustworthy
and non-trustworthy peers, and there is no authentication
of the vote messages. Also, no quantitative trust metric is
specified for choosing among alternative versions. An im-
portant idea of [4] is to maintain reputations for resources
as well as for peers.

A study with a different but relevant scope is a recent
paper of Xiong and Liu [12] on trust evaluation in P2P e-
commerce communities. Although they do not deal with
the details of trust evaluation functions, they run an exper-
imental system which utilizes a modification of the P-Grid
scheme of [1].

7 Final Considerations

Improvements are possible on the basic protocol to make
it more efficient. For example, a timer mechanism can be
used to detect and remove the trust vectors belonging to
peers that are no longer active. Trust queries can be made
more efficient by combining all IDs to be queried into a
single query message, reducing the number of query and
response messages to be handled.

A potential improvement on the basic protocol may be
realized by preserving the hashes of the malicious files
downloaded. These hashes can later be used to send a warn-
ing to the querying peer when a relevant query is received.
This idea was originally proposed in [4] in a similar con-
text. Our protocol can be enhanced to include this feature
with the following modifications: The warning messages
received in a query are grouped along with the normal re-
sponses according to their file hash value. If selected into
the top θT for trust evaluation, a warning message’s trust

0

0.5

1

10000 20000

Φ
1

of downloads

10% mal.
1% mal.

(a) Naive

0

0.5

1

10000 20000

Φ
1

of downloads

10% mal.
1% mal.

(b) Collaborative

0

0.05

0.1

400000 800000

Φ
1

of downloads

10% mal.
1% mal.

(c) Hypocritical, 10% cheating

0

0.05

0.1

400000 800000

Φ
1

of downloads

10% mal.
1% mal.

(d) Hypocritical, 25% cheating

0

0.05

0.1

400000 800000

Φ
1

of downloads

10% mal.
1% mal.

(e) Pseudospoofing, at 250 iqt

0

0.05

0.1

400000 800000

Φ
1

of downloads

10% mal.
1% mal.

(f) Pseudospoofing, at 100 iqt

Figure 4: A graphical summary of the simulation results. Naive attackers can be detected and contained quite rapidly. Hypocritical
attackers, operating at a much lower effectiveness level, can evade detection longer; but their activity is also contained once a sufficient
level of trust is established among the good peers. Pseudospoofing attackers are also able to continue spreading malicious content for a
while but become ineffective as the good peers establish trust among themselves. Collaboration does not seem to be a significant source of
benefit to naive attackers.

and distrust ratings are reversed in the trust score calcula-
tion, contributing a significant distrust factor to the average.

The limitations of our protocol must also be noted. Be-
ing a reputation-based protocol, our system in the end relies
on the judgment of its users. Therefore, it can be effective
only against attacks that are discernible by the user. Never-
theless, many attacks in P2P systems fall into this category,
such as the common decoy files attacks [3].

Another point to note is that our protocol does not distin-
guish between malicious peers and the peers that spread ma-
licious content due to their carelessness, which we believe
is the right way to deal with careless peers from a practical
point of view. On the other hand, if careless users change
their attitude, they always have the ability to improve their
reputation by serving a sufficient number of good files.

Our protocol is designed to be compatible with most first
generation P2P systems. However, certain optimizations
would be needed to obtain the best performance when inte-
grating it with a specific system. For example, in a Gnutella-
like network where a peer’s connections are changed con-
stantly to provide rapid distribution of the content across
the network, building a reliable reputation base can take
too long and a malicious peer can escape recognition for
a long time due to the constantly changing neighborhood.
In such a system, a connection scheme where some of the
neighbors of a peer change continually for content distribu-
tion and others, which are possibly determined by a longest
prefix match on the ID, remain relatively stable for trust
management, could be more effective for faster trust estab-
lishment. More detailed simulations that consider this kind
of specifics of the network where the protocol is to be de-
ployed, and with a more sophisticated modeling of the at-
tackers according to the network’s possible vulnerabilities,
would be needed to get a more realistic evaluation of the
proposed architecture for deployment in an actual system.

Acknowledgments

We would like to thank Ezhan Karaşan for kindly letting
us use the Information Networks Lab’s high performance
workstation for our simulations.

References

[1] K. Aberer and Z. Despotovic. Managing trust in a peer-2-
peer information system. In Ninth international conference
on information and knowledge management (CIKM). 2001.

[2] T. Aura, P. Nikander, and J. Leiwo. DOS-resistant authenti-
cation with client puzzles. In Security Protocols, 8th Inter-
national Workshop. Springer-Verlag, 2000.

[3] BBC-Online. http://news.bbc.co.uk/2/hi/entertainment/-
2093931.stm.

[4] E. Damiani, D. C. di Vimercati, S. Paraboschi, P. Samarati,
and F. Violante. Reputation-based approach for choosing re-
liable resources in peer-to-peer networks. In Proc. of the 9th
ACM Conference on Computer and Communications Secu-
rity. 2002.

[5] EBay. http://www.ebay.com.
[6] M. Gupta, P. Judge, and M. Ammar. A reputation system for

peer-to-peer networks. In Proc. of NOSSDAV’03. 2003.
[7] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The

eigentrust algorithm for reputation management in P2P net-
works. In Proc. of the Twelfth International World Wide Web
Conference (WWW2003). 2003.

[8] R. Merkle. Protocols for public key cryptosystems. In Pro-
ceedings of the 1980 IEEE Symposium on Security and Pri-
vacy. 1980.

[9] P. Resnickand, R. Zeckhauserand, E. Friedman, and
K. Kuwabara. Reputation systems. Communications of the
ACM, 43(12), 2000.

[10] A. A. Selçuk, E. Uzun, and M. R. Pariente. Reputation-
based trust management for P2P networks. Technical Re-
port BU-CE-0402, Department of Computer Engineering,
Bilkent University, 2004.

[11] Symantec. http://securityresponse.symantec.com/avcenter/-
venc/data/vbs.gnutella.html.

[12] L. Xiong and L. Liu. A reputation-based trust model for
peer-to-peer ecommerce communities. In IEEE Conference
on E-Commerce (CEC’03). 2003.

