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Abstract— Blind signature schemes provide the feature that
a user is able to get a signature without giving the actual
message to the signer. Recently a number of ID-based blind
signatures have been proposed. In this paper, we introduce
the concept of generalized ID-based blind signatures based on
ElGamal signature variants. We obtain several new ID-based
blind signatures from this generalized scheme which have not
been explored before and some of them turn out to be more
efficient than previously proposed schemes.

I. INTRODUCTION

In 1984, Shamir [12] introduced the concept of ID-based
cryptography to simplify key management procedures in pub-
lic key infrastructures. Following Joux’s [9] discovery on
how to utilize bilinear pairings in public key cryptosystems,
Boneh and Franklin [2] proposed the first practical ID-based
encryption scheme in Crypto 2001. Since then, ID-based
cryptography has been one of the most active research areas in
cryptography and numerous ID-based encryption and signature
schemes have been proposed that use bilinear pairings.

ID-based cryptography helps us to simplify the key man-
agement process in traditional public key infrastructures. In
ID-based cryptography any public information such as e-
mail address, name, etc., can be used as a public key. Since
public keys are derived from publicly known information, their
authenticity is established inherently and there is no need for
certificates in ID-based cryptography. The private key for a
given public key is generated by a trusted authority and is
sent to the user over a secure channel.

Chaum [4] introduced the concept of blind signatures in
1982. By using blind signatures, the user is able to get
a signature from an authority without revealing the actual
message to the signer. The message is signed with the signers
private key in the protocol. However, the signer cannot get any
information on the resulting signature. Formally, a signature
is blind if the signer’s view and the signature are statistically
independent, where the signer’s view is the set of all values
that are available to the signer in the signature protocol.
The blindness property is used in many applications such as
electronic voting and electronic payment systems.

The first ID-based blind signature scheme was proposed
by Zhang and Kim [13] in 2002. After that, there has been
several proposals for ID-based blind signatures [14], [8], [6].
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In this paper, we introduce the concept of generalized ID-based
blind signatures. First we convert a blind ElGamal signature
scheme into an ID-based counterpart. Then we generalize the
signature scheme by using the ideas in Kalkan et al.’s recent
work [10]. The generalized scheme yields many new ID-
based blind signatures that have not been explored before and
some of them are more efficient than the previously proposed
schemes.

The rest of the paper is organized as follows: Background
concepts including bilinear pairings and blind ElGamal signa-
tures and its generalizations are discussed in Section II. We
describe the basic ID-based blind signature scheme and its
blindness proof in Section III. In Section IV, we describe
the generalizations of the basic scheme. We modify some
of these schemes and produce more efficient signatures in
Section V. We give an efficiency comparison between some of
our schemes and previously proposed signatures in Section VI.
The paper is concluded in Section VII.

II. BACKGROUND

In this section, we present the tools that will be used in the
rest of the paper. We briefly discuss bilinear pairings, blinding
a modified ElGamal signature scheme and its generalizations.

A. Bilinear Pairings

Let GGy be a cyclic additive group of order ¢ generated by
P. Let G5 be a cyclic multiplicative group of the same order.
An admissible bilinear pairing is defined as e : G; xG; — G>
with the following properties:

1) Bilinearity: e(aR,bS) = e(R,S)® where R, S € G

and a,b € Z,. This can also be stated as VR, S,T €
Gi1 e(R+ S,T) =e(R,T)e(S,T) and e(R,S+T) =
e(R,S)e(R,T)

2) Non-degeneracy: The map e does not send all pairs in

G1 x G to the identity of Go. That is e(P, P) # 1.

3) Computability: There exists an efficient algorithm to

compute e(R,S) for any R, S € Gy

B. Modified ElGamal Signature Scheme

Original ElGamal Signature [5] is not suitable to get blind
signatures. However, it is possible to get blind signatures based
on its variants. The modified ElGamal Signature which is used



as a base tool for the rest of the paper is as follows: Let p
be a large prime, ¢ a divisor of p — 1, and g an element in
Z,, of order g. The user chooses o € Z, as his private key
and 3 = ¢g“ mod p as his public key. The parameters p, q, g,
and 3 are public whereas the user keeps « secret. To sign
a message, the user generates a random k €g Z,. Then he
computes = g*¥ mod p and s = ar+ km mod q. The (r, s)
pair is the signature of message m. The equation

(mod q) (1)

is called the signature equation, and verification is done by

s=ar+km

checking the congruence r < (37"g*)™ " (mod p). Security
of ElGamal signatures relies on the discrete logarithm problem
(DLP) since solving a from (3 or s from r, m, 3 can be reduced
to solving DLP in Zj.

C. Basic Blind ElGamal Signature Scheme

Chamenish et al. [3] showed that the above scheme can be
extended to provide blindness. The blind signature protocol
in Fig. 1. between Alice and Nancy is a blind version of the
modified EIGamal signature.

Nancy Alice
k er Z,
7= ¢* mod p
7
—
a,berZ
r=7%g" mod p
m = amir~! mod ¢
m
S
§=ra+km
N

s =& ! + bm mod ¢
output (7, s)

Fig. 1. Blind Signature Protocol
In this blind signature protocol, signature equation is s =
km+ra mod ¢ and the signature for the message m is (r, s).
? —
Verification is done by checking r = (57 "¢g°)™ " mod D,
which is the same as the modified ElGamal scheme. By using
the above protocol, Alice gets a valid signature for the message

m from the notary (Nancy) without revealing the message.

D. Generalized Blind ElGamal Signatures

Horster et al. [7] showed that many variations of the basic
blind signature scheme are possible by modifying the signature
equation (1). One can use the general equation

A=aB+kC (mod q) (2)
to obtain a signature, where « is the secret key of Nancy
and (A, B, C) is the permutation of parameters (1,7, §). The
parameter 7 can be computed as 7 = ¢g* and Alice blinds 7
with two random blinding factors a, b such that 7 = r?g® mod

p. Nancy signs the blinded message m by using the generalized
signature equation (2). The signature is verified by checking
the equation g = 2 +r (mod p), where (A, B, O) is the
permutation of parameters (m,r,s). In order to get a valid
signature, the following two equations must hold.

A=adACC™ +bC mod ¢
B =bBCC™ mod ¢q

By using these equations it is possible to extract m and s.
Note that, s and s cannot be in the equation for m since m is
sent to Nancy before s and s are determined in the protocol.
Therefore the value s cannot appear in C'. This also prevents
getting a blind signature for the original ElGamal scheme.

The generalization can be extended further by choosing
A, B,C as general functions of m,r,s. In that case, one of
the functions should be chosen as 1 to get efficient variants.
Moreover, suitable functions should be chosen to guarantee
solvability of parameters s, 5 and m. Further details can be
found in Horster et al.’s paper [7].

ITI. BASIC ID-BASED BLIND SIGNATURE SCHEME

An ID-based blind signature scheme consists of four algo-
rithms: SETUP, EXTRACT, SIGN, and VERIFY. In SETUP, the
PKG, chooses a secret as the global secret key and publishes
the global public system parameters. In EXTRACT, the PKG
verifies a user’s identity and computes his private key. In SIGN,
the user (Alice) and the signer (Nancy) run the blind signature
protocol to get the blind signature for a message. Finally
in VERIFY, the verifier verifies the signature and recovers
the message by using the public parameters and the signer’s
identity.

An ID-based blind signature scheme can be obtained from
the blind signature scheme described in Section II-C as fol-
lows:

o SETUP: Let GGy be cyclic additive group of order ¢
generated by P. Let G, be a cyclic multiplicative
group of the same order and e : G; X G; — G2 be an
admissible bilinear pairing. The PKG chooses s €r Z;
as the global secret key and computes P, = sP as the
global public key. The PKG publishes system parameters
(G1, Ga, e, P, Py, H, Hy) where H and H; are
secure hash functions.

e EXTRACT: PKG verifies the user’s identity ID and
computes Qrp = Hi(ID) and S;p = sQrp as user’s
public and private keys respectively.

e SIGN: To sign a message m € Z,, Alice and Nancy
run the blind signature protocol: First Nancy chooses
k €r Z;, then computes 7 = e(P,P)" and sends
7 to the Alice. After receiving 7 from Nancy, Alice
chooses a,b €g Z%, then computes r = 7%e(P,P)"
and blinds the message m as m = amrr~" and sends
m to Nancy. Nancy signs the blinded message m by
using the signature equation (U = 7S;p + kmP) and
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sends U to Alice. Alice checks whether (7#,U) is a
valid signature for 7, then computes the signature U as
U = Uri~' + bmP. Finally Alice outputs the signature
(r,U) for the message m. The protocol can be seen in
Fig. 2.

o VERIFY: Given ID, the message m and a signature
(7,U), the signature is valid if the following equation
holds.

e(Ua P)e(QID; Ppub)_r =r™m

Nancy Alice
k €r ZZ
7 = e(P, P)*
N
a,bEer Z*
r=r e(P P)?
m = amir !
L
U =#Sip + kP
b,
e(U, P)e(Qrp, Ppuy) ™" = 7™

U=Uri "t +bmP
output (r,U)

Fig. 2. ID-based Blind Signature Protocol

Correctness of the given scheme can be shown by using
the bilinearity properties of e. Notice that, if (r,U) is a valid
signature for m, then e(U, P)e(Qrp, Ppup) ™" is

=e(Uri~" +bmP, P)e(Qrp, Ppus) "
U

= e(Uri' 4+ bmP, P)e (—TSIDvp)
(7S1p + kmP)ri~! 4+ bmP, P)e(—rSip, P)

(
(
(
e(rSrp + kimri P 4+ bmP, P)e(—rSip, P)
(
(k
e(

=e

e(kmri~'P 4+ bmP, P)
(am#r=1)ri~'P + bmP, P)

kamP + bmP, P)

= ( + e(P, P))™

=€

The above scheme is the ID-based version of the modified
blind ElGamal signature described in Section II-C. In that
scheme, the signature equation is § = a7 + km mod g where
7 = g* and the signature is (r, s). Since additive elliptic curve
groups are used in the ID-based structure, the signing equation
and 7 are slightly different. The signing equation for the ID-
based ElGamal signature becomes,

U =7Sp+ kmP

In this signature equation, uppercase letters are used to denote
the elements of the elliptic curve group. Syp is the private key
of the user; so it is a natural replacement for « in the original
scheme. U is the second part of the signature, replacing s. A
natural choice for 7 in the ID-based scheme is 7 = e(P, P)*
since 7 = ¢* in the original scheme.

A. Blindness Proof

A signature is said to be blind if a given message-signature
pair and Nancy’s view are statistically independent. That is,
the signer cannot get any information on the actual message
and the resulting signature. If there always exists a unique
mapping between any view of the signer and any given
message signature pair, we can say that the signature is blind.

In order to prove blindness we will show that for a given
message-signature pair (m,r,U) and any view of Nancy
(rh, 7, U), there always exists a unique pair of blinding factors
a, b that maps (m, 7, 17) to (m,r,U). Since Alice chooses a, b
randomly, Nancy cannot get any information from her view
and the signature scheme will be blind.

For a signature (r,U) generated for message m during the
protocol, the following equations must hold.

m = amrr 3)
r = 7e(P, P)® 4)
U=Uri'+bmP (5)

The blinding factors a and b can be uniquely determined
from the first two equations. a is determined uniquely from (3)
as a = mm " tri~!. From (4), e(P, P)? = r7~9, since e(P, P)
is a generator for Go, therefore b is also unique. If these a
and b satisfy (5), the desired mapping will be found and the
signature will be blind. We know that

U=Uri"' 4 bmP <= e(U,P) = e(Uri ' 4+ bmP, P).
So it is sufficient to show that e(U, P) = e(Ur#~! 4+ bmP, P)
to complete the proof. Notice that, since (r, U) is a valid
signature, the signature equation U = 7S;p + kmP and the
verification equation e(U, P)e(Qp, P)~" = r™ should hold.

Hence, we have e(Uri#~1 + bmP, P) equals

= e(Uri~t, P)e(P, P)'™
Uri= L2 (ri—a)m

(
= e(
=e(U,P)" THpm—am
= e(rSrp + kmP, P)M ' pmp—am
= e(FSip, P))"" e(kmP, P)"  ymi—am
ZE(SID, )’l“ ~mr 1,rm7:7am
=e(Qrp; P)’“ AT A
=e(Qrp, P)'r
=e¢(U, P).



No. T U r U m Verification

BLLl | e(P,P)* | #Sip +kmP | #e(P,P)® | Uri~! +bmP amir—1 e(U, P)e(Qrp, Ppup) " =1™
BL12 | e(P,P)* | mSip + kiP | #e(P,P) | ari U +brP | a tmir—! e(U, P)e(Qrp, Ppup) "™ =1r"
BLILl | e(P,P)* | Sip + kmfP | #%e(P,P)? U + bmrP amri—1 e(U,P)e(Qrp, Ppup) = ™"
BLIL2 | e(P,P)* | m#S;p + kP | #®e(P,P)? aU +bP a " tmri! e(U,P)e(Qrp, Poup) "™ =1

BL IIL1 a”lr 7Sip + kP H(m,t) aU + bP — H(m,e(U, P)e(Qrp, Ppup)™ ") =1
BL IIL.2 ar —Sip + kP | H(m,t) U+ brpP - H(m,e(U,P)" " e(Qrp, Ppup)™ ) =7

TABLE I

GENERALIZED ID-BASED BLIND SIGNATURES, WHERE = e(P, P)* AND t = t%¢(P, P)?

IV. GENERALIZED ID-BASED BLIND SIGNATURES

We can generalize the above signature scheme by using
different signature equations. Instead of using U = 7Sip +
kmP as the signature equation, we can use

A=DBSip+kC

in general, where (A, B, C) is the permutation of the param-
eters (m, T, U ). Note that, we can use P, mP and 7P instead
of 1, m and 7 in cases where they need to be members of
the elliptic curve group. However, not all the permutations
generate useful variants. We should consider that U is a
member of the elliptic curve group so it cannot be used for
B. Moreover, U cannot be in the position of C'. Since, in
that case, U and U are needed to extract m; but, m is sent
to Nancy before U and U are determined in the protocol.
Therefore we can get only two variants. The signing equation
for these variants are:

U =mSip + kiP
U =r7Sip + kmP

(6)
(7

Two more variants can be generated by using the permutations
of (m#,U,1). The signing equation for these variants are:

U= S;p+ kmiP
U =miSip + kP

®)
€))

The verification equations and other details for these signatures
are summarized in Table I. Note that, we can also use a general
function f(m,7) instead of just the product m7.

Another way of using ElGamal signatures to sign a message
m is to mix m into r by a hash function, instead of using m in
the computation of U. In this way, it is possible to remove m
from the signing equations by modifying the blind signature
protocol. If we remove m from (6), the signing equation will
be,

U =7#S;p+ kP. (10)

If we use (10) as the signature equation, we modify the blind
signature protocol as follows: Instead of sending 7, Nancy
computes ¢ = e(P, P)* and sends # to Alice. Alice computes
t = t%(P, P)* and r = H(m,t), where H is a secure hash
function. Then, she computes 7 = a~'r and sends 7 to Nancy.
Nancy computes U by using the signature equation (6) and
sends U to Alice. Alice checks whether the signature is valid,

computes U = alUU +bP, and outputs the signature (7, U/). The
modified protocol can be found in Fig. 3.
Similarly, if we remove m from (7) the signing equation
will be,
U=38 D+ kT P.

The verification equation and other details for these signatures
can be found in Table I. Note that, removing m from (8)
and (9) does not generate new variants.

Nancy Alice
k €r Z;
t =e(P,P)*
LN
a,ber ZZ
t =t%(P,P)®
r=H(m,t)
F=a"lr
P
U= rSip + kP
g,

e(U, P)e(Q1p, Pu) ™ =7

U=aU +bP
output (r,U)

Fig. 3. Modified Blind Signature Protocol

V. MORE EFFICIENT ID-BASED BLIND SIGNATURES

Computing a signature requires two to four scalar multipli-
cations in (1 and three or four exponentiations in G5, depend-
ing on the signature equation, as well as one pairing evaluation.
The other pairing e(Q1p, Ppus) can be precomputed before the
signature protocol.

The cost of verifying a signature will be dominated by the
pairing computations, which is the most expensive operation.
Two pairing computations and an exponentiation in G are
needed to verify a signature. Note that, in the proposed
schemes, the value e(Q;p, Ppyp) is used, which is fixed for a
particular user and needs to be computed only once for each
user.

The number of pairing operations can be reduced to one by
changing the definitions of S;p and Q;p as in [1] and [11].



No. T U r U m Verification
BLIV.l | e(P,Qp)* | #Sip+kmP | #e(P,Qp)® | Uri~! +bmP amir—1 e(U,Qrp)e(P,P)"" =r™
BLIV2 | e(P,Qrp)* | mSip+kiP | #e(P,Qrp)? | ari U +brP | a tmir—! e(U,Qrp)e(P,P)™™ =r"
BLIV3 | e(P,Qrp)* | Sip+kmiP | #e(P,Qrp)® U + bmrP amri—! e(U,Qrp)e(P, P) = r™"
BLIV4 | e(P,Qrp)* | m#Sip + kP | #®e(P,Q1p)® al +bP a " tmri—1 e(U,Qrp)e(P,P)~™" =r
BL IV.5 a"lr 7Sip + kP H(m,t) aU + bP - H(m,e(U,Qrp)e(P,P)"")=r
BL IV.6 ar —Sip + kFP H(m,t) U+ brP — H(m,e(U, Q]D)Tile(P, P)Til) =r
BL V.1 e(P, P)* (F+km)Sip | 7e(P,Qrp)® | Uri=! +bmP amir—1 e(U,Qrp)e(P,P)~" =r™
BL V2 e(P, P)k (k+7#m)Sip | 7e(P,Qrp)? | ari= U +brP | a~‘msr—1! e(U,Qrp)e(P,P)~™ =r"
BL V.3 e(P, P)k (M +k#)Sip | 7e(P,Qrp)® U + bmrP amri—1 e(U,Qrp)e(P,P) =rm"
BL V4 e(P, P)* (1 + km#)Srp | #e(P,Qrp)® aU + bP a~tmri—1 e(U,Qrp)e(P,P)™™" =r
BL V.5 a~lr (7 + k)Srp H(m,t) aU + bP - H(m,e(U,Qp)e(P,P)"")=r
BL V.6 ar (1+ k7)Sip H(m,t) U+ brP - H(m,e(U,Qip)" 'e(P,P)" ) =r

TABLE II

GENERALIZED ID-BASED BLIND SIGNATURES, WHERE = e(P, Q;p)* INIV.5,1V.6, = e(P, P)* IN V.5, V.6 AND t = t%¢(P,Q1p)®

If we define

Qrp = (Hi1(ID) + s)P
Sip = (H\(ID) +5)"'P,

the number of pairing evaluations can be reduced to one. Note
that @;p can be computed by anyone, since the value of sP
is public, but S;p cannot be computed without knowing the
value of s.

By changing the definitions of S;p and Q;p as described,
we can get more efficient variants of the proposed schemes.
The computation of r should also be changed in order to adapt
to the changes. Instead of computing r = e(P, P)*, we have

T = E(P, Q[D)k.

This modification does not affect the efficiency of the signature
computation, since the value e(P,Qrp) can be precomputed
by the sender.

The verification equations and other details of the efficient
versions of the signatures modified in this fashion are given
in Group IV of Table II.

Further variants with a reduced signing cost can be obtained
by modifying the generalized signature equation as,

U:AS[D+1€BS[D, (11D

where the signing cost is reduced by one scalar multiplication
in the elliptic curve group G;. Note that, this kind of gen-
eralization is not possible over the basic ElGamal signatures,
because when k and « are used together, we cannot extract s
from the signing equation.

We can get six more efficient variants by this modification
whose signing equations are:

U= (r+km)Sip
(k+rm)Sip
(m+ kr)Srp
(14 kmr)Sip
(
(

r+k)Sip

U
U
U
U
U= (1+kr)Sp

Scheme Signing Cost Verification Cost
Group I 1B +4M + 4F 2B +2F
Group 1I 1B+ (24)M + 3FE 2B+ 1F
Group III 1B+ 2-4)M + 3E 2B+ 1E
Group IV 1B + 2-4)M + 3-4)E 1B+ (1-2)E
Group V 1B + (2-3)M + 3-4)E 1B+ (1-2)F
ZK02 [13] 2B+ 6M 2B+ 1E
ZKO03 [14] 2B+ 6M 2B+ 1M

HCWOS [8] 1B+ 3M + 3E 2B+ 1M
GWWLO7 [6] 3B+ 7M 4B
TABLE III

COMPARISON OF ID-BASED BLIND SIGNATURE SCHEMES

The verification equations and other details of these signatures
are given in Group V of Table II.

VI. PERFORMANCE COMPARISON

In this section, we give a performance comparison of our
proposed schemes and the four available ID-based blind sig-
nature schemes [13], [14], [8], [6] based on bilinear pairings.
As the main computational cost, we consider the number of
bilinear pairings (denoted by B), modular exponentiations,
(denoted by E), and scalar multiplications in elliptic curve
group (denoted by M). We assume the value of e(P, P) is
precomputed by every party, and the value of e(P,Qrp) is
precomputed by the signer but not the verifier.

Among the proposed schemes, Group I, Group II, and
Group III are the least efficient schemes with signing cost
of one pairing, two to four scalar multiplications, and three
or four exponentiations and verification cost of two pairings,
and one or two exponentiations. Group IV and Group V
are the most efficient schemes with the signing cost of one
pairing, two to four scalar multiplications, and three or four
exponentiations and verification cost of one pairing, and one
or two exponentiations.

Compared to the previously proposed schemes, ZK02 [13]
has the signing cost of 2B + 6M and verification cost of
2B + 1E. In ZKO03 [14], signing cost is 2B + 6M and
verification cost is 2B + 1M. In HCWO0S5 [8], signing cost
is 1B 4+ 3M + 3E and verification cost is 28 + 1M. In
GWWLO07 [6] signing cost is 3B + 7M and verification cost



is 4B; however, GWWLO07 [6] has the advantage that blind
signature protocol needs only one round.

Performance comparison of our schemes to the previously
proposed schemes can be found in Table III. As the table
shows Group IV and Group V are the most efficient signatures
with the smallest number of pairing evaluations.

VII. CONCLUSION

In this paper, ID-based blind signatures are investigated.
We showed how a modified blind ElIGamal signature can be
converted to an ID-based blind signature. We extended our
basic ID-based blind signature scheme into a generalized ID-
based blind signatures as in the work of Horster et al. [7] on
the basic blind ElGamal signature. We also presented some
original variants which were not possible in the non-ID-based
setting. Then, we modified some of our signatures to get more
efficient signature schemes.

Among the existing schemes, Group IV and Group V with
just one pairing operation in signature verification, become the
most efficient ID-based blind signatures in the literature.
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