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Abstract—There have been many ID-based signature schemesproposed by Kalkan et al. are actually insecure. We first show
proposed in recent years, most of which are, in one way or how an attacker, having observed a message-signature pair,
another, variants of the ElGamal signature scheme. Kalkan o4n ohtain the private key of the signer or forge signatures on
et al. proposed the concept of “generalized ID-based ElGamal . A
signatures” as a unifying framework for these schemes, which new messages. _Second, we Pfc?Pose certal_n modlflqatlons on
also produced many new variants. In this paper, we analyze the SOme of these signatures to avoid the security flaws involved.
security of these signature schemes and show that some of the The rest of the paper is organized as follows: Background
proposed variants are insecure. . concepts including bilinear pairings and generalized ElGamal

_Index Terms—ID-based cryptography, ElGamal signatures, gjgnatyres are discussed in Section Il. We describe Kalkan
bilinear pairings. \ . . . L
et al.’'s generalized ID-Based ElGamal signatures in detail in

Section Ill. Some security flaws and attacks for some of the
variants in [8] are described in Section IV and modifications

In 1984, Shamir [11] introduced the concept of ID-base fix these variants are proposed in Section V. Section VI
cryptography to simplify key management procedures in puboncludes the paper.
lic key infrastructures. Following Joux’s [7] discovery on
how to utilize bilinear pairings in public key cryptosystems, 1. BACKGROUND
Boneh and Franklin [2] proposed the first practical ID-based
encryption scheme in Crypto 2001. Since then, ID-based cryp/n this section, we present the tools that are used in
tography has become one of the most active research areaggReralized ID-based ElGamal signatures. We briefly discuss
cryptography and numerous ID-based encryption and signatifénear pairings, the ElGamal signature scheme and its gen-
schemes have been proposed that use bilinear pairings. eralizations.

ID-based cryptography helps us to simplify the key man-
agement process in traditional public key infrastructures. fix Bilinear Pairings

ID-based cryptography any public information such as e-| et G, be a cyclic additive group of ordargenerated byP.
mail address, name, etc., can be used as a public key. Sipge, pe a cyclic multiplicative group of the same order. A
public keys are derived from publicly known information, theityptographic bilinear pairing is defined as Gy x Gy — G
authenticity is established inherently and there is no need iy the following properties:
certificates in ID-based cryptography. The private key for a . . b

. ! . . . 1) Bilinearity: e(aR,bS) = e(R,S)* whereR,S € G,
given public key is generated by a trusted authority and is ) ’ )

anda,b € Z,. This can also be stated &R, 5,71 <

sent to the user over a secure channel.
Recently, there have been many proposals for ID-based 2326591)%;(1%5%) = e(R,T)e(S,T) ande(R, 5 +T) =

Schemes, in Gne way o he otfer, have been based on (ng) NOdegeneracyThe mape dogs not send al pairs i
' y ; G1 x G; to the identity ofGy. That ise(P, P) # 1.

ElGamal 5|gnaFur_e algorithm [4]. _Horster et aI._[6] showed 3) Computability: There exists an efficient algorithm to
that many variations of the basic ElGamal signature are computee(R, 5) for any R, S € G
possible by modifying the signature equation. Following their ’ ’ 1
work, Kalkan et al. [8] extended those variants to the ID-
based setting and observed that most of the existing ID—ba?e‘d
signature schemes [1], [3], [5], [9], [10], [12] are special Let p be a large prime ang be a generator of;. The
instances of a more general concept which they called thser choosea € Z,_; as his private key and then computes
generalized ID-based ElGamal signature. £ = g* mod p as his public key. The parametersg, and 3

In this work, we analyze the security of these ID-baseate public whereas the user keepsecret. To sign a message,
ElGamal signature variants and show that some of the scherttess user generates a randdmer Z,_;. Then he computes

I. INTRODUCTION

ElGamal Signature Scheme



r =g" mod p ands = k~'(m—ra) mod (p — 1). The(r,s) can also be used for the generalized signature equation, is
pair is the signature of message The equation described below:

In the original EIGamal scheme, the signature equation is
m = ar + ks mod (p — 1) wherer = ¢g* and the signature
is calledthe signature equatignand verification is done by is (, s). The corresponding signing equation for the ID-based

checking the congruence™ = A7r* mod p. Security of E/Gamal signature is:

m=ar+ks (modp-—1) (¢D)]

ElGamal signature relies on the discrete logarithm problem mP = rS;p + kU
(DLP) since solvingx from 3 or s from r, m, 3 can be reduced
to solving the DLP inZ;. Here, the uppercase letters are used to denote elements of the

, elliptic curve groupG;. Sip is the private key of the user; so
C. The Meta-EiGamal Signature Scheme it is a natural replacement far in the original schemel/ is
Horster et al. [6] showed that many variations of the basige part of the signature that replacedhe message: cannot
ElGamal signature are possible by modifying the signatus@ used in the equation directly since it is not a member of
equation. Instead of using ElGamal’s original signature equgtiptic curve group; thereforenP is used to replacen.
tion, one can use the general equation A natural choice for- in the ID-based scheme is to compute
+A=+aB+kC (mod q) r asr = kP since r.equals.g’“ .in the .original scheme.
However,r must be an integer i, in the signature equation,
where A, B andC are functions ofn,  ands, ¢ is a divisor hence, it can be computed as= H(kP). SincekP is needed
of p—1, andg is an element irZ,, of orderq. The signature for verification (3), the signature will be issued &sP,U)

can be verified by checking the equation: instead of(r, U).
g L FEBrEC (mod p) (2)  Ill. GENERALIZED ID-BASED ELGAMAL SIGNATURES
We refer the reader to [6] and [8] for further details. Kalkan et al. [8] discussed how the ID-based signature
scheme above can be generalized by using the generalized
D. An ID-Based ElGamal Signature Scheme signing equation
Let the private key generator (PKG) be a trusted party A= BSip+ kC, (4)

responsible for verifying the users’ identities and generatin i )
their private keys. An ID-based signature scheme COﬂSiStSY%?ere(A’ B, C) is a permutation of the parametdrs, r, U),

four algorithms: &TuP, EXTRACT, SIGN, and VERIFY. As instead of the basic equation? = r5;p + kU. Note that,

an example, consider the following 1D-based version of tPt all the perbmutatflonlfl generate useful varrl,‘adnts con;dermg
original EIGamal signature scheme: U as a member of elliptic curve group, and,r € Z,.

SETUP Let & be a cvelic additive aroun of orderHence'A and C should be members of the elliptic curve
° . genérated blyP Lot g be a cyclicg muﬁ)tiplicative group, but notB. Also note thatmP andrP can be used
f th ' d 2 e : G G a instead ofm andr, respectively. So, by permuting the elements
group of the same order and : & x Gi = G2 o () 0 7)) Kalkan et al. obtained four ID-based ElGamal
be a bilinear pairing. The PKG choosescr Z; as

signature variants. The signing equation for these variants are:
the global secret key and computés,, = sP as the g gning €q

global public key. The PKG publishes system parameters mP =rSip + kU (5)
(G1, Ga, e, P, Pp_ub, H, H,) where H and H; are U =rS;p+ kmP (6)
secure hash functions.

o EXTRACT: PKG verifies the user’s identity ID and com- U=mSip + krP @)
putesQ;p = H,(ID) andS;p = sQ;p as user’s public rP=mSip + kU (8)
and private keys respectively.

» SIGN: To sign a message: € Z,, a user with his private
key Srp, first chooses: € Z,, then computes:

Note that, the two variants wheté is a coefficient ofS;p
do not produce useful signing equations.
In the variants wheré P is not needed for verification;
r = H(kP) can be computed ag P, P)* and the signature far will be
U=k (mP —rSip) (r, (_]). For other variants, whereP is needed for verification,
r will be computed as- = H(kP) and the signature fom
The signature for the messageis (kP,U) will be (kP,U). Kalkan et al. also proposed computingas
o VERIFY. Given ID, a messagen, and a signature H(m,kP) instead of H(kP) or e(P, P)*. In that casem
(kP,U), the signature is valid if the following equationdoes not need to occur in the signing equations.
holds: As in the work of Horster et al. [6], more variants can be
r? m produced by using different permutations. Instead of choos-
e(U,kP)e(@ip, Fpuw)" = e(P. P) @) ing (A, B,C) as a permutation ofm,r,U), one can also
The above scheme is the ID-based version of the origindloose them as a permutation @fur,U,1), (mr,mU,1)
ElGamal signature scheme. The conversion process, whaid (mr,rU, 1). Signs of A, B, and C' can be changed by



No. r U Signature Verification
D11 r = H(kP) U=k Y(mP —rSip) (kP,U) e(U, kP)e(Qrp, Ppup)” = (P, P)™
ID 1.2 r = H(kP) U=k 1(rP—mSip) (kP,U) e(U,kP)e(Qrp, Ppup)™ = (P, P)"
ID 1.3 r = e(P, P)* U=kmP —rSip (r,U) e(U,P)e(Qrp, Ppup)” =1
ID 14 r = e(P, P)* U=rkP—mSip (r,U) e(U,P)e(Qrp, Ppup)™ =17
ID 1.5 r = H(m, kP) U=k Y (P—-rS;p) (kP,U) e(U,kP)e(Qrp, Ppup)” = e(P, P)
ID 1.6 r = H(m, kP) U=k '(rP - S;p) (kP,U) e(U,kP)e(Qrp, Ppup) = e(P, P)"
ID 1.7 r = H(m, kP) U=kP—rSp (kP,U) e(U, P)e(Q1p, Ppup)” = e(P, kP)
ID 1.8 r = H(m, kP) U=rkP—Sip (kP,U) e(U, P)e(Qip, Pyuy) = e(P,kP)"
ID 1.1 r= H(kP) U=k T(P—-—mrSip) (kP,U) e(U,kP)e(Qrp, Ppup)™" = e(P, P)
ID I1.2 r = H(kP) U=k=Y(=S;p +mrP) (kP,U) e(U, kP)e(Qrp, Ppup) = e(P, P)™"
ID 1.3 r =e(P, P)F U=kP—mrSip (r,U) e(U,P)e(Qrp, Ppup)™ =1
ID 1.4 r = e(P, P)* U =mrkP — Sip (r,U) e(U, P)e(Qrp, Ppup) =1r™"
ID 1.1 r = H(kP) U=k"Y(m 1P —rSp) (kP,U) e(U,kP)e(Qrp, Ppup)” = e(P, pym "
ID 1.2 r= H(kP) U= kil(rP — mflle) (kP,U) e(U,kP)e(Qrp, Ppub)ﬂqu =e(P,P)"
ID 1.3 r = e(P, P)* U=m"1kP—rSip (r,U) e(U,P)e(Qrp, Ppus)” — !
ID 1.4 r = e(P, P)* U=rkP—-m~1Sp (r,U) e(U,P)e(Q,D,Ppub)’"’1 ="
ID V.1 r = H(kP) U=kY(mP—r"1S1p) (kP,U) | e(U,kP)e(Qrp, Ppus)” = = e(P, P)™
ID V.2 r = H(kP) U= k*l(rflP —mSrp) (kP,U) e(U,kP)e(Qrp, Ppup)™ = e(P, P)”"_1
ID IV.3 r =e(P, P)F U=mkP—r—18p (r,U) e(U, P)e(Qrp, Ppub)r‘1 =rm
ID IV.4 r=e(P, P)k U=r"1P—-mSip (r,U) e(U, P)e(Qrp, Ppup)™ = ot
ID IV.5 r = H(m, kP) U=k=Y(P—r"18p) (kP,U) e(U,kP)e(Qrp, J!Dpub)T’1 =e(P,P)
IDIV.6 | == H(m,kP) U=k Y(r=1P - Sip) (kP,U) e(U, kP)e(Q1 D, Ppus) = e(P, P)" "
ID IV.7 r = H(m,kP) U=kP—r~1Sip (kP,U) e(U, P)e(Qrp, Ppub)r‘1 =e(P,kP)
IDIV8 | r=H(m,kP) U=r"1kP—-S;p (kP,U) e(U, P)e(Q1p, Ppup) = e(P,kP)" "
ID V.1 r= H(kP) U=k Ir—T(mP — Sip) (kP,U) e(U,kP)"e(Qrp, Ppus) = €(P, P)™
ID V.2 r = H(kP) U=k 1r=1(P—-mS;p) (kP,U) e(U,kP)"e(Qrp, Ppup)™ = e(P, P)
ID V.3 r = H(m, kP) U=k 'r=Y(P—Sip) (kP,U) e(U,kP)"e(Q1p, Ppu) = e(P, P)
IDVIT | r=H(kQip) U= (r+ km)Sip EQip.U) | e(U, P) = e((r + Fm)Q1D, Pyup)
ID VI.2 TZH(k‘Q[D) U:(m—i—kr)SID (kQ[D,U) E(U,P)Ze((k’T-i-m)Q[D,Ppub)
ID VI.3 r=H(kQrp) U= (rm+k)Sip (kQ1p,U) e(U, P) = e((rm + k)Q1D, Ppub)
ID V1.4 r=H(kQrp) U= (1+kmr)Sip (kQrp,U) e(U, P) = e((1 + mkr)Qrp, Ppub)
ID VI.5 r=H(kQrp) U=r"Ym+k)Sip (kQrp,U) e(U, P)" = e((m + k)Qrp, Ppub)
ID VI.6 r=H(kQID) U=r"1(1+km)Sip (kQrp,U) e(U, P)" = e((mk+ 1)Q1p, Ppus)
ID VI.7 TZH(m,k:Q]D) U=(T+k‘)S]D (kQ[D7U) e(U,P):e((T-i-k‘)Q]D,Ppub)
IDVIL8 | r=H(m,kQrp) U=r"Y14+k)Srp (kQrp,U) e(U,P)" = e((1+ k)Qrp, Ppus)

TABLE |

THE GENERALIZED ID-BASED ELGAMAL SIGNATURES AND THEIR VERIFICATION EQUATIONS.

multiplying them by+1. To obtain more variants, a general
function f(m,r) can be used instead of just the produet.

The verification equations and other details for all signaturese
proposed in [8] are summarized in Table |. Group | lists the
variants that are obtained by permutipig, », U) and(1,r,U).
Group 1l lists the variants that are obtained by permuting
(mr,U,1). Group lll lists the variants that are obtained by
permuting (mr, mU, 1). Group IV lists the variants that are ID V.3, ID VL.5, ID VI.6, and ID V1.8 have this weakness.
obtained by permutindmr, rU, 1) and (r,rU, 1). Group V Below, we describe our attacks in detail:

shows theU variants, and finally, group VI shows the variant% variant ID 1.7

those were not possible on the basic ElGamal signatures. ) ' )

We refer the reader to [8] for more information about the The signaturer on a message: is computed as

Variants ID 1.7, ID 1.8, ID IV.7, and ID IV.8 have this
kind of weakness.

In some variantsy can be removed from the signature
equation, which means that either the signature does not
depend on the messageiocan be modified according to

a new message’. Hence, one can forge a valid signature
on a different message without knowiry,. Variants

generalization of the ID-based ElGamal signature schemes. r = H(m,kP)
. y U=kP—-rSip
. INSECUREVARIANTS o= (kP,U).

We found that some of the schemes in Table IIl are insecugeeing a message-signature ffair, o), an adversary can find
Their insecurity results mainly from two reasons: S:p by computing

o There are variants where all the terms in the signing
equation are public exce;p; hence, the private key
Srp can be extracted from the message-signature pair.

r = H(m,kP)
Sip =r"Y(kP —U).



B. Variant ID 1.8 F. Variant ID VI.5

The signaturer on a messagen is computed as The signaturer on a message: is computed as
s, r = H(kQ1p)
U:TkP_SID U:T_l(m+k)S[D
= (kP,U).
g ( ’ ) O':(kQ]D7U).
Seeing a message-signature gair, o), an adversary can find ] . ]
S;p by computing Seeing a message-signature pait, o), an adversary can
forge a signatures’ = (kK'Q;p,U’) on a new message’
r = H(m,kP) as follows:
SID = ’I"kP — U / /
' E'Qip = (m—m")Qrp + kQrp
C. Varla-nt ID IV.7 - ' = H(K'Qrp)
The signaturer on a message: is computed as U =+
r = H(m,kP) .
U— kP —r1g Note thatU’ = r'~ " (m/ + k¥')S;p hence,o’ = (K'Qrp,U’)
s AETT I is a valid signature.
o = (kP,U).
Seeing a message-signature [fair, o), an adversary can find G- Variant ID V1.6
Srp by computing The signaturer on a message: is computed as
L
D =r B ) U:T_1(1+I€m)S[D
D. Variant ID IV.8 o= (kQrp,U).

The signaturer on a message: is computed as ] . )
Seeing a message-signature pait,c), an adversary can

r = H(m,kP) forge a signaturer’ = (K'Qrp,U’) on a new message’
U=r"'kP—-Sp as follows:
o = (kP,U).

K'Qrp =mm' ™ kQrp
Seeing a message-signature fair, o), an adversary can find r' = H(K'Qrp)
Srp by computing U =

r = H(m,kP)

S P U Note thatU’ = '~ ' (1 4+ k'm’)S;p hence,o’ = (K'Qp,U’)
1D ‘ is a valid signature.

E. Variant ID V.3

The signaturer on a message: is computed as H. Variant ID V1.8
r = H(m, kP) The signaturer on a message: is computed as
U=k"'r=}(P=Sip) r=H(kQip)
U:(kP7U)' U:T_l(l-i-k)S[D
Seeing a message-signature pgit,c), an adversary can o= (kQip,U).

forge a signatures’ = (K'P,U’) on a new message:’ by ) . )
first choosing a random €5 Z,. Then he can compute aS€€iNg a message-signature pain, o), an adversary can

valid 'P anU’ as follows: forge a signature’ = (kQp,U’) on a new message:’
as follows:
K'P = tkpP
' = H(m' ,k'P) r'=H(K'Qrp)
U=t U =+""rU.

Note thatU’ = k'~'+'~' (P — S;p) henceo’ = (K'P,U’) is Note thatU’ = +'~'(1+ k)S;p hence,s’ = (kQ;p,U’) is a
a valid signature. valid signature.



No. r U Signature Verification
IDL.7v2 | r = H(m,kP) U=kPpu —7SiD (kP,U) e(U, P)e(Q1p, Ppus)” = e(Ppup, kP)
ID1.8v2 | r = H(m,kP) U =r1kPpup — SiD (kP,U) e(U, P)e(Qrp, Ppus) = e(Ppub, kP)"
IDIVIV2 | 7= H(m,kP) | U=kPyup —7r 1 SID (kP,U) e(U, P)e(Qr1p, Ppub)r_1 = e(Ppup, kP)
IDIV.8v2 | 7= H(m,kP) | U=r"'kPyu — Sip (kP,U) e(U, P)e(Q1D; Ppub) = e(Ppub, IcP)F1
TABLE I

THE MODIFIED SIGNATURE AND VERIFICATION EQUATIONS OF SOME INSECURE VARIANTS

V. FIXING THE VARIANTS

As mentioned in Section IV, the first type of attack can[i]
be mounted since all terms in the signing equation are public
exceptS;p. Hence, seeing a message-signature pair, one can
obtain theS;p. To avoid this flaw, instead aP, we usedP,,;, [2]
in the signing equation for the variants ID 1.7, ID 1.8, ID IV.7
and ID 1V.8. Note that everP,,;, is public, kP, is secret |3
sincek is only known by the signer. The modified equations
for these variants are given in Table II.

The variant ID 1.7v2 is the same as the ID-Based EIGam
signature scheme of Yi [12]. Yi proved that the scheme is
secure if the Diffie-Hellman problem is hard. The attackd®
proposed in this paper do not apply to the modified variants
ID 1.8v2, ID IV.7v2, and ID IV.8v2. [6]

For other insecure variants, ID V.3, ID VI.5, ID VI.6 and
ID V1.8, the main problem is that can be eliminated from (7]
the signature equation with a single multiplication operation.
We can change the signature equations by multiplying 8]
with only one term in the signature equation. For exampleg;
for variant ID V.3, the signature equation

fl]

(10]

_1.—1,.-1 o
U=k""r (P S]D) [11]

can be modified as

U=k"'(r"'P—Sip) [12]

or
U=kP—-r"1Sp).

Although this modification prevents the attack to be mounted,
the new variants are same as the variants ID I1V.6 and ID IV.5,
respectively. The same modification also generates the exist-
ing variants in the table for the remaining insecure variants
ID VL5, ID VI.6, and ID VI.8.

VI. CONCLUSION

In this paper, we revisited the generalized ID-based ElGamal
signature schemes of Kalkan et al. [8] and showed that some of
the proposed variants are insecure. We exploited the security
flaws by proposing simple yet effective attacks in which an ad-
versary can either obtain the private key of the signer or forge
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a signature on a message he desires. We then proposed some

modifications to patch these variants. As this work shows,
security proofs are necessary for the variants obtained in the

generalization process of the ID-based signature schemes. For

future work, we will try to prove the security of the remaining
and the modified variants by using formal tools such as random
oracles and zero-knowledge techniques.



