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Abstract—There have been many ID-based signature schemes
proposed in recent years, most of which are, in one way or
another, variants of the ElGamal signature scheme. Kalkan
et al. proposed the concept of “generalized ID-based ElGamal
signatures” as a unifying framework for these schemes, which
also produced many new variants. In this paper, we analyze the
security of these signature schemes and show that some of the
proposed variants are insecure.

Index Terms—ID-based cryptography, ElGamal signatures,
bilinear pairings.

I. I NTRODUCTION

In 1984, Shamir [11] introduced the concept of ID-based
cryptography to simplify key management procedures in pub-
lic key infrastructures. Following Joux’s [7] discovery on
how to utilize bilinear pairings in public key cryptosystems,
Boneh and Franklin [2] proposed the first practical ID-based
encryption scheme in Crypto 2001. Since then, ID-based cryp-
tography has become one of the most active research areas in
cryptography and numerous ID-based encryption and signature
schemes have been proposed that use bilinear pairings.

ID-based cryptography helps us to simplify the key man-
agement process in traditional public key infrastructures. In
ID-based cryptography any public information such as e-
mail address, name, etc., can be used as a public key. Since
public keys are derived from publicly known information, their
authenticity is established inherently and there is no need for
certificates in ID-based cryptography. The private key for a
given public key is generated by a trusted authority and is
sent to the user over a secure channel.

Recently, there have been many proposals for ID-based
signatures [1], [3], [5], [9], [10], [12] and most of these
schemes, in one way or the other, have been based on the
ElGamal signature algorithm [4]. Horster et al. [6] showed
that many variations of the basic ElGamal signature are
possible by modifying the signature equation. Following their
work, Kalkan et al. [8] extended those variants to the ID-
based setting and observed that most of the existing ID-based
signature schemes [1], [3], [5], [9], [10], [12] are special
instances of a more general concept which they called the
generalized ID-based ElGamal signature.

In this work, we analyze the security of these ID-based
ElGamal signature variants and show that some of the schemes

proposed by Kalkan et al. are actually insecure. We first show
how an attacker, having observed a message-signature pair,
can obtain the private key of the signer or forge signatures on
new messages. Second, we propose certain modifications on
some of these signatures to avoid the security flaws involved.

The rest of the paper is organized as follows: Background
concepts including bilinear pairings and generalized ElGamal
signatures are discussed in Section II. We describe Kalkan
et al.’s generalized ID-Based ElGamal signatures in detail in
Section III. Some security flaws and attacks for some of the
variants in [8] are described in Section IV and modifications
to fix these variants are proposed in Section V. Section VI
concludes the paper.

II. BACKGROUND

In this section, we present the tools that are used in
generalized ID-based ElGamal signatures. We briefly discuss
bilinear pairings, the ElGamal signature scheme and its gen-
eralizations.

A. Bilinear Pairings

Let G1 be a cyclic additive group of orderq generated byP .
Let G2 be a cyclic multiplicative group of the same order. A
cryptographic bilinear pairing is defined ase : G1×G1 → G2

with the following properties:

1) Bilinearity: e(aR, bS) = e(R,S)ab where R,S ∈ G1

and a, b ∈ Zq. This can also be stated as∀R,S, T ∈
G1 e(R + S, T ) = e(R, T )e(S, T ) and e(R,S + T ) =
e(R,S)e(R, T )

2) Non-degeneracy:The mape does not send all pairs in
G1 ×G1 to the identity ofG2. That ise(P, P ) 6= 1.

3) Computability: There exists an efficient algorithm to
computee(R,S) for any R,S ∈ G1

B. ElGamal Signature Scheme

Let p be a large prime andg be a generator ofZ∗
p. The

user choosesα ∈ Zp−1 as his private key and then computes
β = gα mod p as his public key. The parametersp, g, andβ
are public whereas the user keepsα secret. To sign a message,
the user generates a randomk ∈R Zp−1. Then he computes



r = gk mod p ands = k−1(m−rα) mod (p− 1). The(r, s)
pair is the signature of messagem. The equation

m ≡ αr + ks (mod p− 1) (1)

is called the signature equation, and verification is done by

checking the congruencegm ?≡ βrrs mod p. Security of
ElGamal signature relies on the discrete logarithm problem
(DLP) since solvingα from β or s from r, m, β can be reduced
to solving the DLP inZ∗

p.

C. The Meta-ElGamal Signature Scheme

Horster et al. [6] showed that many variations of the basic
ElGamal signature are possible by modifying the signature
equation. Instead of using ElGamal’s original signature equa-
tion, one can use the general equation

±A ≡ ±αB ± kC (mod q)

whereA, B andC are functions ofm, r ands, q is a divisor
of p− 1, andg is an element inZ∗

p of orderq. The signature
can be verified by checking the equation:

g±A ?≡ β±Br±C (mod p) (2)

We refer the reader to [6] and [8] for further details.

D. An ID-Based ElGamal Signature Scheme

Let the private key generator (PKG) be a trusted party
responsible for verifying the users’ identities and generating
their private keys. An ID-based signature scheme consists of
four algorithms: SETUP, EXTRACT, SIGN, and VERIFY. As
an example, consider the following ID-based version of the
original ElGamal signature scheme:

• SETUP: Let G1 be a cyclic additive group of order
q generated byP . Let G2 be a cyclic multiplicative
group of the same order ande : G1 × G1 → G2

be a bilinear pairing. The PKG choosess ∈R Z∗
q as

the global secret key and computesPpub = sP as the
global public key. The PKG publishes system parameters
〈G1, G2, e, P, Ppub, H, H1〉 where H and H1 are
secure hash functions.

• EXTRACT: PKG verifies the user’s identity ID and com-
putesQID = H1(ID) andSID = sQID as user’s public
and private keys respectively.

• SIGN: To sign a messagem ∈ Zq, a user with his private
key SID, first choosesk ∈R Zq, then computes:

r = H(kP )

U = k−1(mP − rSID)

The signature for the messagem is (kP,U)
• VERIFY: Given ID, a messagem, and a signature

(kP,U), the signature is valid if the following equation
holds:

e(U, kP )e(QID, Ppub)r ?= e(P, P )m (3)

The above scheme is the ID-based version of the original
ElGamal signature scheme. The conversion process, which

can also be used for the generalized signature equation, is
described below:

In the original ElGamal scheme, the signature equation is
m ≡ αr + ks mod (p− 1) wherer = gk and the signature
is (r, s). The corresponding signing equation for the ID-based
ElGamal signature is:

mP = rSID + kU

Here, the uppercase letters are used to denote elements of the
elliptic curve groupG1. SID is the private key of the user; so
it is a natural replacement forα in the original scheme.U is
the part of the signature that replacess. The messagem cannot
be used in the equation directly since it is not a member of
elliptic curve group; thereforemP is used to replacem.

A natural choice forr in the ID-based scheme is to compute
r as r = kP since r equals gk in the original scheme.
However,r must be an integer inZp in the signature equation,
hence, it can be computed asr = H(kP ). SincekP is needed
for verification (3), the signature will be issued as(kP,U)
instead of(r, U).

III. G ENERALIZED ID-BASED ELGAMAL SIGNATURES

Kalkan et al. [8] discussed how the ID-based signature
scheme above can be generalized by using the generalized
signing equation

A = BSID + kC, (4)

where(A,B, C) is a permutation of the parameters(m, r, U),
instead of the basic equationmP = rSID + kU . Note that,
not all the permutations generate useful variants considering
U as a member of elliptic curve group, andm, r ∈ Zp.
Hence,A and C should be members of the elliptic curve
group, but notB. Also note thatmP and rP can be used
instead ofm andr, respectively. So, by permuting the elements
of (m, r, U), Kalkan et al. obtained four ID-based ElGamal
signature variants. The signing equation for these variants are:

mP = rSID + kU (5)

U = rSID + kmP (6)

U = mSID + krP (7)

rP = mSID + kU (8)

Note that, the two variants whereU is a coefficient ofSID

do not produce useful signing equations.
In the variants wherekP is not needed for verification,r

can be computed ase(P, P )k and the signature form will be
(r, U). For other variants, wherekP is needed for verification,
r will be computed asr = H(kP ) and the signature form
will be (kP,U). Kalkan et al. also proposed computingr as
H(m, kP ) instead ofH(kP ) or e(P, P )k. In that case,m
does not need to occur in the signing equations.

As in the work of Horster et al. [6], more variants can be
produced by using different permutations. Instead of choos-
ing (A,B,C) as a permutation of(m, r, U), one can also
choose them as a permutation of(mr, U, 1), (mr, mU, 1)
and (mr, rU, 1). Signs of A,B, and C can be changed by
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No. r U Signature Verification
ID I.1 r = H(kP ) U = k−1(mP − rSID) (kP, U) e(U, kP )e(QID, Ppub)

r = e(P, P )m

ID I.2 r = H(kP ) U = k−1(rP −mSID) (kP, U) e(U, kP )e(QID, Ppub)
m = e(P, P )r

ID I.3 r = e(P, P )k U = kmP − rSID (r, U) e(U, P )e(QID, Ppub)
r = rm

ID I.4 r = e(P, P )k U = rkP −mSID (r, U) e(U, P )e(QID, Ppub)
m = rr

ID I.5 r = H(m, kP ) U = k−1(P − rSID) (kP, U) e(U, kP )e(QID, Ppub)
r = e(P, P )

ID I.6 r = H(m, kP ) U = k−1(rP − SID) (kP, U) e(U, kP )e(QID, Ppub) = e(P, P )r

ID I.7 r = H(m, kP ) U = kP − rSID (kP, U) e(U, P )e(QID, Ppub)
r = e(P, kP )

ID I.8 r = H(m, kP ) U = rkP − SID (kP, U) e(U, P )e(QID, Ppub) = e(P, kP )r

ID II.1 r = H(kP ) U = k−1(P −mrSID) (kP, U) e(U, kP )e(QID, Ppub)
mr = e(P, P )

ID II.2 r = H(kP ) U = k−1(−SID + mrP ) (kP, U) e(U, kP )e(QID, Ppub) = e(P, P )mr

ID II.3 r = e(P, P )k U = kP −mrSID (r, U) e(U, P )e(QID, Ppub)
mr = r

ID II.4 r = e(P, P )k U = mrkP − SID (r, U) e(U, P )e(QID, Ppub) = rmr

ID III.1 r = H(kP ) U = k−1(m−1P − rSID) (kP, U) e(U, kP )e(QID, Ppub)
r = e(P, P )m−1

ID III.2 r = H(kP ) U = k−1(rP −m−1SID) (kP, U) e(U, kP )e(QID, Ppub)
m−1

= e(P, P )r

ID III.3 r = e(P, P )k U = m−1kP − rSID (r, U) e(U, P )e(QID, Ppub)
r = rm−1

ID III.4 r = e(P, P )k U = rkP −m−1SID (r, U) e(U, P )e(QID, Ppub)
m−1

= rr

ID IV.1 r = H(kP ) U = k−1(mP − r−1SID) (kP, U) e(U, kP )e(QID, Ppub)
r−1

= e(P, P )m

ID IV.2 r = H(kP ) U = k−1(r−1P −mSID) (kP, U) e(U, kP )e(QID, Ppub)
m = e(P, P )r−1

ID IV.3 r = e(P, P )k U = mkP − r−1SID (r, U) e(U, P )e(QID, Ppub)
r−1

= rm

ID IV.4 r = e(P, P )k U = r−1kP −mSID (r, U) e(U, P )e(QID, Ppub)
m = rr−1

ID IV.5 r = H(m, kP ) U = k−1(P − r−1SID) (kP, U) e(U, kP )e(QID, Ppub)
r−1

= e(P, P )

ID IV.6 r = H(m, kP ) U = k−1(r−1P − SID) (kP, U) e(U, kP )e(QID, Ppub) = e(P, P )r−1

ID IV.7 r = H(m, kP ) U = kP − r−1SID (kP, U) e(U, P )e(QID, Ppub)
r−1

= e(P, kP )

ID IV.8 r = H(m, kP ) U = r−1kP − SID (kP, U) e(U, P )e(QID, Ppub) = e(P, kP )r−1

ID V.1 r = H(kP ) U = k−1r−1(mP − SID) (kP, U) e(U, kP )re(QID, Ppub) = e(P, P )m

ID V.2 r = H(kP ) U = k−1r−1(P −mSID) (kP, U) e(U, kP )re(QID, Ppub)
m = e(P, P )

ID V.3 r = H(m, kP ) U = k−1r−1(P − SID) (kP, U) e(U, kP )re(QID, Ppub) = e(P, P )
ID VI.1 r = H(kQID) U = (r + km)SID (kQID, U) e(U, P ) = e((r + km)QID, Ppub)
ID VI.2 r = H(kQID) U = (m + kr)SID (kQID, U) e(U, P ) = e((kr + m)QID, Ppub)
ID VI.3 r = H(kQID) U = (rm + k)SID (kQID, U) e(U, P ) = e((rm + k)QID, Ppub)
ID VI.4 r = H(kQID) U = (1 + kmr)SID (kQID, U) e(U, P ) = e((1 + mkr)QID, Ppub)
ID VI.5 r = H(kQID) U = r−1(m + k)SID (kQID, U) e(U, P )r = e((m + k)QID, Ppub)
ID VI.6 r = H(kQID) U = r−1(1 + km)SID (kQID, U) e(U, P )r = e((mk + 1)QID, Ppub)
ID VI.7 r = H(m, kQID) U = (r + k)SID (kQID, U) e(U, P ) = e((r + k)QID, Ppub)
ID VI.8 r = H(m, kQID) U = r−1(1 + k)SID (kQID, U) e(U, P )r = e((1 + k)QID, Ppub)

TABLE I
THE GENERALIZED ID-BASED ELGAMAL SIGNATURES AND THEIR VERIFICATION EQUATIONS.

multiplying them by±1. To obtain more variants, a general
function f(m, r) can be used instead of just the productmr.
The verification equations and other details for all signatures
proposed in [8] are summarized in Table I. Group I lists the
variants that are obtained by permuting(m, r, U) and(1, r, U).
Group II lists the variants that are obtained by permuting
(mr, U, 1). Group III lists the variants that are obtained by
permuting(mr, mU, 1). Group IV lists the variants that are
obtained by permuting(mr, rU, 1) and (r, rU, 1). Group V
shows therU variants, and finally, group VI shows the variants
those were not possible on the basic ElGamal signatures.
We refer the reader to [8] for more information about the
generalization of the ID-based ElGamal signature schemes.

IV. I NSECUREVARIANTS

We found that some of the schemes in Table III are insecure.
Their insecurity results mainly from two reasons:

• There are variants where all the terms in the signing
equation are public exceptSID; hence, the private key
SID can be extracted from the message-signature pair.

Variants ID I.7, ID I.8, ID IV.7, and ID IV.8 have this
kind of weakness.

• In some variants,r can be removed from the signature
equation, which means that either the signature does not
depend on the message ork can be modified according to
a new messagem′. Hence, one can forge a valid signature
on a different message without knowingSID. Variants
ID V.3, ID VI.5, ID VI.6, and ID VI.8 have this weakness.

Below, we describe our attacks in detail:

A. Variant ID I.7

The signatureσ on a messagem is computed as

r = H(m, kP )
U = kP − rSID

σ = (kP,U).

Seeing a message-signature pair(m,σ), an adversary can find
SID by computing

r = H(m, kP )

SID = r−1(kP − U).
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B. Variant ID I.8

The signatureσ on a messagem is computed as

r = H(m, kP )
U = rkP − SID

σ = (kP,U).

Seeing a message-signature pair(m,σ), an adversary can find
SID by computing

r = H(m, kP )
SID = rkP − U.

C. Variant ID IV.7

The signatureσ on a messagem is computed as

r = H(m, kP )

U = kP − r−1SID

σ = (kP,U).

Seeing a message-signature pair(m,σ), an adversary can find
SID by computing

r = H(m, kP )
SID = r(kP − U).

D. Variant ID IV.8

The signatureσ on a messagem is computed as

r = H(m, kP )

U = r−1kP − SID

σ = (kP,U).

Seeing a message-signature pair(m,σ), an adversary can find
SID by computing

r = H(m, kP )

SID = r−1kP − U.

E. Variant ID V.3

The signatureσ on a messagem is computed as

r = H(m, kP )

U = k−1r−1(P − SID)
σ = (kP,U).

Seeing a message-signature pair(m,σ), an adversary can
forge a signatureσ′ = (k′P,U ′) on a new messagem′ by
first choosing a randomt ∈R Zq. Then he can compute a
valid k′P an U ′ as follows:

k′P = tkP

r′ = H(m′, k′P )

U ′ = t−1r′
−1

rU.

Note thatU ′ = k′
−1

r′
−1(P − SID) hence,σ′ = (k′P,U ′) is

a valid signature.

F. Variant ID VI.5

The signatureσ on a messagem is computed as

r = H(kQID)

U = r−1(m + k)SID

σ = (kQID, U).

Seeing a message-signature pair(m,σ), an adversary can
forge a signatureσ′ = (k′QID, U ′) on a new messagem′

as follows:

k′QID = (m−m′)QID + kQID

r′ = H(k′QID)

U ′ = r′
−1

rU.

Note thatU ′ = r′
−1(m′ + k′)SID hence,σ′ = (k′QID, U ′)

is a valid signature.

G. Variant ID VI.6

The signatureσ on a messagem is computed as

r = H(kQID)

U = r−1(1 + km)SID

σ = (kQID, U).

Seeing a message-signature pair(m,σ), an adversary can
forge a signatureσ′ = (k′QID, U ′) on a new messagem′

as follows:

k′QID = mm′−1
kQID

r′ = H(k′QID)

U ′ = r′
−1

rU.

Note thatU ′ = r′
−1(1 + k′m′)SID hence,σ′ = (k′QID, U ′)

is a valid signature.

H. Variant ID VI.8

The signatureσ on a messagem is computed as

r = H(kQID)

U = r−1(1 + k)SID

σ = (kQID, U).

Seeing a message-signature pair(m,σ), an adversary can
forge a signatureσ′ = (kQID, U ′) on a new messagem′

as follows:

r′ = H(k′QID)

U ′ = r′
−1

rU.

Note thatU ′ = r′
−1(1 + k)SID hence,σ′ = (kQID, U ′) is a

valid signature.
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No. r U Signature Verification
ID I.7v2 r = H(m, kP ) U = kPpub − rSID (kP, U) e(U, P )e(QID, Ppub)

r = e(Ppub, kP )
ID I.8v2 r = H(m, kP ) U = rkPpub − SID (kP, U) e(U, P )e(QID, Ppub) = e(Ppub, kP )r

ID IV.7v2 r = H(m, kP ) U = kPpub − r−1SID (kP, U) e(U, P )e(QID, Ppub)
r−1

= e(Ppub, kP )

ID IV.8v2 r = H(m, kP ) U = r−1kPpub − SID (kP, U) e(U, P )e(QID, Ppub) = e(Ppub, kP )r−1

TABLE II
THE MODIFIED SIGNATURE AND VERIFICATION EQUATIONS OF SOME INSECURE VARIANTS.

V. FIXING THE VARIANTS

As mentioned in Section IV, the first type of attack can
be mounted since all terms in the signing equation are public
exceptSID. Hence, seeing a message-signature pair, one can
obtain theSID. To avoid this flaw, instead ofP , we usedPpub

in the signing equation for the variants ID I.7, ID I.8, ID IV.7
and ID IV.8. Note that evenPpub is public, kPpub is secret
sincek is only known by the signer. The modified equations
for these variants are given in Table II.

The variant ID I.7v2 is the same as the ID-Based ElGamal
signature scheme of Yi [12]. Yi proved that the scheme is
secure if the Diffie-Hellman problem is hard. The attacks
proposed in this paper do not apply to the modified variants
ID I.8v2, ID IV.7v2, and ID IV.8v2.

For other insecure variants, ID V.3, ID VI.5, ID VI.6 and
ID VI.8, the main problem is thatr can be eliminated from
the signature equation with a single multiplication operation.
We can change the signature equations by multiplyingr−1

with only one term in the signature equation. For example,
for variant ID V.3, the signature equation

U = k−1r−1(P − SID)

can be modified as

U = k−1(r−1P − SID)

or
U = k−1(P − r−1SID).

Although this modification prevents the attack to be mounted,
the new variants are same as the variants ID IV.6 and ID IV.5,
respectively. The same modification also generates the exist-
ing variants in the table for the remaining insecure variants
ID VI.5, ID VI.6, and ID VI.8.

VI. CONCLUSION

In this paper, we revisited the generalized ID-based ElGamal
signature schemes of Kalkan et al. [8] and showed that some of
the proposed variants are insecure. We exploited the security
flaws by proposing simple yet effective attacks in which an ad-
versary can either obtain the private key of the signer or forge
a signature on a message he desires. We then proposed some
modifications to patch these variants. As this work shows,
security proofs are necessary for the variants obtained in the
generalization process of the ID-based signature schemes. For
future work, we will try to prove the security of the remaining
and the modified variants by using formal tools such as random
oracles and zero-knowledge techniques.
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