Probabilistic Optimization Techniques for
Multicast Key Management *

Ali Aydin Selcuk?

Department of Computer Sciences
Purdue University
West Lafayette, IN 47906, USA
selcuk@cs.purdue.edu

Deepinder Sidhu

Maryland Center for Telecommunications Research
Department of Computer Science and Electrical Engineering
University of Maryland Baltimore County

Baltimore, MD 21250, USA
sidhu@umbc.edu

Abstract

The Logical Key Hierarchy (LKH) scheme and its derivatives are among the most
efficient protocols for multicast key management. Traditionally, the key distribution
tree in an LKH-based protocol is organized as a balanced binary tree, which gives a
uniform O(logn) complexity for compromise recovery in an n-member group. In this
paper, we study improving the performance of LKH-based key distribution proto-
cols by organizing the LKH tree with respect to the members’ rekeying probabilities
instead of keeping a uniform balanced tree. We propose two algorithms which com-
bine ideas from data compression with the special requirements of multicast key
management. Simulation results show that these algorithms can reduce the cost of
multicast key management significantly, depending on the amount of variation in
the rekey characteristics of the group members.

Key words: Network security, multicast security, group key management.

! This work was done while the author was at the Maryland Center for
Telecommunications Research, University of Maryland Baltimore County.

* This research was supported in part by the Department of Defense at the Mary-
land Center for Telecommunications Research, University of Maryland Baltimore
County. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either

Preprint submitted to Elsevier Science 25 March 2002

1 Introduction

Multicast is a technology for efficient one-to-many and many-to-many com-
munications over a wide area network. It enables a single packet sent out by
a source to be delivered to multiple destinations by replication at multicast
routers over a routing tree. Multicast is an attractive technology for sending
data to large groups since it reduces the sender bandwidth requirements, the
network load, and the latency for the receivers. Some applications that benefit
from multicast include audio and video distribution over the Internet, group
collaboration applications such as video conferencing, distributed simulations,
and multiplayer games, and distribution of large files to multiple destinations
such as the Usenet News distribution. Issues in multicasting include routing,
reliability, and security. The requirements are similar to those in unicasting,
with the additional requirement that the protocols must be highly efficient
and scalable to support large groups.

Multicast security is concerned with guaranteeing the privacy, authentication,
and integrity of the group communication. These functionalities in multicast
security are provided by encrypting and authenticating the group messages
with a group key that is shared by all members of the group. Typically, a group
key manager is in charge of maintaining and distributing the group key. The
issue of efficient key management is a significant problem in large multicast
groups. Especially if the group is highly dynamic in terms of membership and
if the security policy requires that the group key be changed after every leaving
member so that nobody outside the group has the key, then key management
can be a very significant problem.

Currently, the most efficient methods for multicast key management are based
on the Logical Key Hierarchy (LKH) scheme, which was independently dis-
covered by Wallner et al. [23] and Wong et al. [24]. In LKH, group members
are organized as leaves of a tree with logical internal nodes. When a member is
compromised, possibly due to its leaving the group, the cost of recovering the
group from this compromise is proportional to the depth of the compromised
member in the LKH tree. The original LKH scheme proposes maintaining a
balanced tree, which gives a uniform cost of O(logn) rekeys for compromise
recovery in an n-member group.

In this paper, we study improving the performance of LKH-based key distri-
bution protocols by organizing the LKH tree with respect to the members’
rekeying probabilities instead of keeping a uniform balanced tree. This prob-
lem was first pointed out by Poovendran and Baras in the Crypto’99 con-
ference [17]; but no solutions have been proposed to date. We propose two
algorithms which combine ideas from data compression with the special re-

expressed or implied, of the Department of Defense or the U.S. Government.

quirements of multicast key management. Simulation results show that these
algorithms can reduce the cost of multicast key management significantly, de-
pending on the amount of variation in the rekey characteristics of the group
members.

The remainder of this paper is organized as follows: In Section 2, we review the
LKH scheme for multicast key management. In Section 3, we introduce and
analyze the problem of probabilistic LKH optimization. In Sections 4 and 5,
we propose two algorithms for this problem and discuss their design rationale.
In Section 6, we prove an upper bound for the possible inoptimality of these
algorithms. In Section 7, we propose a weight assignment technique needed
for practical use of the algorithms. In Section 8, we describe the simulation
experiments and present their results. In Section 9, we conclude with a discus-
sion of the issues regarding an effective utilization of the techniques discussed
in this paper.

1.1 Related Work

Group key establishment protocols can be classified as (contributory) group
key agreement protocols and (centralized) group key distribution protocols.
Most group key agreement protocols are multi-party generalizations of the
two-party Diffie-Hellman key agreement protocol [5,21,18]. They have the ad-
vantage of doing without an active key management authority; but they also
require quite intensive computation power, proportional to the size of the
group. Therefore, group key agreement protocols are mostly used for relatively
small groups (i.e. with 100 members or less).

In Internet multicasting, groups are typically large, and there is an active
group manager available. Therefore, most multicast key management proto-
cols are based on centralized key distribution protocols. In the Group Key
Management Protocol (GKMP) of Harney et al. [10], the group key is passed
to each member by a unicast communication with the group key manager.
This protocol has the disadvantage that when a member is compromised, pos-
sibly due to a departure, the group key manager has to re-initialize the group
by distributing the new key to every individual member one by one. A similar
but more scalable protocol is the Scalable Multicast Key Distribution (SMKD)
protocol proposed by Ballardie [3]. In this protocol, the key manager delegates
the key management authority to routers in the Core-Based Tree (CBT) mul-
ticast routing. To distribute a new group key, the key manager passes the key
to the neighbor routers in the multicast tree over a secure unicast channel,
and the routers pass the key to the group members and to the other routers in
the tree. This protocol is scalable to large groups, but has the disadvantage of
requiring trusted routers and being specific to the CBT routing protocol. The

Tolus protocol [16] deals with the scalability problem by dividing the multi-
cast group into subgroups. Each subgroup has its own subgroup key and key
manager, and rekeying problems are localized to the subgroups. The multi-
cast group is organized as a tree of these subgroups, and translators between
neighbor subgroups help a multicast message propagate through the tree. A
similar approach is a group key management framework proposed by Hard-
jono et al. [9], where the group members are divided into “leaf regions”, and
the managers of the leaf regions are organized in a “trunk region”. The key
management problem is localized to the regions, and inter-region communica-
tion is maintained by “key translators”. This framework provides a scalable
solution for key management in large multicast groups.

Currently, the most efficient multicast key distribution protocols which enable
all group members to share a common key not known to anyone outside the
group are based on the Logical Key Hierarchy (LKH) protocol and its variants.
LKH-based protocols, as will be discussed in more detail in Section 2, have
the ability to rekey the whole group with O(logn) multicast messages when
a member is compromised. The LKH structure was independently discovered
by Wallner et al. [23] and Wong et al. [24]. Modifications to the basic scheme
which improve the message complexity by a factor of two with a relatively
small computational overhead have been proposed in [15,6]. Certain similar-
ities between LKH trees and some information-theoretic concepts have been
pointed out in [17].

Another different class of group key distribution protocols is the Broadcast
Encryption protocols [7]. These protocols guarantee the secrecy of the key
against coalitions of up to a specified number of outsiders. Luby and Stad-
don [14] prove a lower bound for the storage and transmission costs for the
protocols in this class, which is prohibitively large for most cases.

1.2 Notation

The following notation is used throughout this paper:

n: number of members in the group
M;: 1th member of the group
d;: depth of M; in the LKH tree

p;: probability of M; being the next member to cause a rekey
(due to a departure, compromise, etc.)

All logarithms are to the base 2, and ¢ in the summations Y, ranges from 1
to n, unless otherwise is stated.

2 The LKH Scheme

The main motivation behind the LKH scheme is to be able to efficiently rekey
the group (i.e. to update and distribute a new group key) in case of a member
compromise, possibly due to a departure.

In a simple, naive group key distribution protocol, the key manager contacts
each member individually to pass the new group key, using a pairwise shared
secret key to encrypt it. When a member is compromised in such a group,
there is no way of recovery but the key manager contacting all members one
by one to give a new group key. The cost of such a recovery operation can be
prohibitively high for the key manager if the multicast group is large consisting
of thousands or millions of members.

The LKH scheme aims to reduce the cost of a compromise recovery operation
by adding extra encryption keys into the system. The members of the group
are organized as leaves of a “logical” key tree which is maintained by the key
manager. The internal (non-leaf) nodes in this tree are “logical” entities which
do not correspond to any real-life entities of the multicast group, but are used
for key distribution purposes only. There is a key associated with each node
in the tree, and each member holds a copy of every key on the path from its
corresponding leaf node to the root of the tree. Hence, the key corresponding
to the root node is shared by all members and serves as the group key. An
instance of an LKH tree is shown in Figure 1.

Kroot

KOOO K(JOl KOl(J K011 KlOO KlOl K 110 K 111

M{ M, Mz M; Ms Mg M; Mg

Fig. 1. An example LKH tree with eight members. Each member holds the keys
on the path from its leaf node to the root. Kgyot is the key shared by all group
members.

In this figure, member M; holds a copy of the keys Ko, Koo, Ko, and Kgoot;
member M, holds a copy of Ky, Koo, Ko, and Kpg,e; and so on. In case
of a compromise, the compromised keys are changed, and the new keys are
multicast to the group encrypted by their children keys. For example, assume
the keys of M, are compromised. First Ky is changed and sent to M, over
a secure unicast channel. Then Ky is changed; two copies of the new key are

encrypted by Kygo and Kyy; and sent to the group. Then K| is changed and
sent to the group, encrypted by Ky and Ky; and finally Kg,,; is changed and
sent to the group, encrypted by K, and K. From each encrypted message,
the new keys are extracted by the group members who have a valid copy of
either one of the (child) encryption keys.

If the security policy requires backward and forward secrecy for group commu-
nication (i.e. a new member should not be able to decrypt the communication
that took place before its joining, and a former member should not be able to
decrypt the communication that takes place after its leaving) then the keys
on the leaving/joining member’s path in the tree should be changed in a way
similar to that described above for compromise recovery.

Although an LKH tree can be of an arbitrary degree, most efficient and practi-
cal protocols are obtained by binary trees, and studies in the field have mostly
concentrated on binary trees [23,15,6]. We follow the convention and assume
the LKH trees are binary. We also assume that the binary tree is always kept
full. (i.e. After deletion of a node, any node left with a single child is also
removed and its remaining child is linked directly to the node above it.)

3 The Problem of Probabilistic LKH Optimization

The problem addressed in this paper is how to minimize the average rekey
cost of an LKH-based protocol by organizing the LKH tree with respect to
the rekey likelihoods of the members. Instead of keeping a uniform balanced
tree, the average rekey cost can be reduced by decreasing the cost for more
dynamic (i.e. more likely to rekey) members at the expense of increasing that
cost for more stable members. This can be achieved by putting the more
dynamic members closer to the root and pushing more stable members deeper
down the tree.

The rekey operations caused by a periodic key update or a joining member can
be achieved relatively easily with a single fixed-size multicast message by using
a one-way function to update the keys [15]. The more costly rekey operations
are those which are caused by a member compromise or eviction event. The
communication and computation costs of these rekey operations are linearly
proportional to the depth d; of the compromised (or, evicted) member, as
ad; + b, a > 0, where the exact values of ¢ and b depend on the specifics
of the LKH implementation. The objective in this study is to minimize the
cost of this more costly kind of rekey operations that are caused by a member
compromise or eviction event.

The optimal solution to this problem is the tree organization that will minimize

the average cost of all future rekey operations. However, finding this optimal
solution is not possible in practice since that would require the knowledge of
the rekey probability distributions of all current and prospective members of
the group as well as the cost calculations for every possible sequence of future
join, leave, and compromise events. Instead of this intractable problem, we
concentrate on a more tractable optimization problem, that is to minimize
the cost of the next rekey operation. The expected cost of the next rekey
operation, due to a leave or compromise event, is equal to >, p;d; where p; is
the probability that member M; will be the next to be evicted /compromised,
and d; is its depth in the tree.

3.1 LKH Optimization and Data Compression

The problem mentioned above has many similarities to the data compression
problem with code trees. In the latter problem, messages to be encoded are
organized as leaves of a binary tree. The codeword used to encode a message
is obtained by traversing the path from the root of the tree to the leaf for
that message, assigning a 0 for every left branch taken and a 1 for every right
branch. The length of a codeword obtained by this method is equal to d; bits,
where d; is the depth of the message in the tree. The average code length
per message is equal to >, p;d;, where p; is the probability of message m; to
be the next to appear. The quantity Y, p;d; is known as the average external
path length of the tree. Shannon’s Noiseless Source Coding Theorem [20] shows
that the minimum average code length that can be attained by an encoding
scheme is —), p;logp;, known as the entropy of the message source. The
difference between the entropy and the actual average code length is known
as the redundancy of the code.

The optimal tree that minimizes the average external path length for a given
set of messages {m1, ma, ..., my,} with probabilities {p1, ps, . . ., pn } is obtained
by the Huffman algorithm [11]. The Huffman algorithm builds a tree from the
set, of messages recursively, combining each time the two nodes with the small-
est probabilities until all the nodes are combined as a tree. Another solution
that gives very good compression in practice but which is slightly sub-optimal
is the Shannon-Fano trees [4]. The Shannon-Fano algorithm builds a tree from
a given set of messages by repeatedly dividing the message set into two parts
of (roughly) equal probability until every set includes a single element. The
redundancy of the Huffman trees is proven to be less than p,,q. + 0.086, where
Pmaz 15 the probability of the most likely message [8]. The redundancy of the
Shannon-Fano trees is less than 1 [4]. Although finding the best partition in
the Shannon-Fano coding is NP-hard, there are many partition heuristics that
maintain the redundancy bound of 1.

Although the data compression problem and the LKH optimization problem
share many similarities, they have significant differences as well. For dynamic
data compression problems where message probabilities can change and new
messages can be added into the system during the process, there are dynamic
Huffman algorithms (e.g. [12,22]) which dynamically maintain a Huffman tree
preserving the the optimal average external path length. These algorithms
maintain the Huffman structure by changing the location of the messages in
the tree according to the changing probabilities. Such changes do not incur any
overhead on the objective function (i.e., to minimize the average code length).
On the other hand, locational changes in a dynamic LKH tree would mean
rekeying entire paths of the tree where members are moved, just contrary to
the objective (i.e., to minimize the average number of rekeys). Therefore, for
the purposes of efficient key management, an LKH scheme with sub-optimal
> pid; can have a better overall performance than the one which tries to keep
> pid; minimal all the time.

Another difference of the LKH trees from the data compression trees is that,
if member evictions are the main reason for rekey operations (i.e. if very few
compromise events happen other than member evictions), then each member
in the tree will cause a single rekey operation while it is in the tree.

4 Design Rationale

As discussed above, finding the optimal solution that minimizes the average
number of rekey messages over all future sequences of join, leave, and com-
promise events is not possible in practice. Therefore, we focus our attention
on minimizing the expected cost of the next rekey event, Y, p;d;. The proven
optimal solution for minimizing Y, p;d; is given by a Huffman tree. However,
maintaining a Huffman tree requires changes in the locations of the existing
members in the tree, which means extra rekey operations. We choose to avoid
this kind of extra rekey operations and concentrate on algorithms which do
not require changing the location of the existing members.

Given the condition that the locations of existing members will not be changed,
the main structural decision for the tree organization is where to put a new
member at insertion time. Also, the insertion operation should observe the
current locations of existing members. That is, the keys each member is holding
after an insertion operation should be the same as those it was holding before
the insertion (or the corresponding new keys, for the keys that are changed),
plus possibly some newly added keys to the tree. We will focus on the insertion
operations of this kind, which preserve the relative location of the present
members. These operations will work by first choosing an insertion point in
the existing tree for a given new node, and then inserting the new node at the

chosen location by the Put procedure, illustrated in Figure 2.

Root Root
YO pumx)

s 2N

M X

Fig. 2. The Put procedure, inserting the new member M at the chosen location X.
Relative location of existing nodes is kept the same to avoid extra rekey operations.

That is, to insert a new member M into the group, a new internal node N
is created at the chosen location in the tree, and M is linked underneath.
To denote this insertion operation at a given location X for a given new
member M, we write Put(M,X). Note that the traditional LKH insertion,
where every new member is inserted as a sibling to a leaf node, is a specific
case of Put(M,X) where X is a leaf node.

In our probabilistic LKH trees, each node X in the tree has a probability
field X.p that shows the cumulative probability of the members in the sub-
tree rooted at X, similar to that in Huffman trees (i.e., X.p is equal to the
probability of the corresponding member if X is a leaf node, and it is equal
to X.left.p + X.right.p if X is an internal node). The Put procedure shown
above also updates the p field of all nodes affected by the insertion as well as
setting up the appropriate links for A and N.

5 Insertion Algorithms

In this section, we describe two LKH insertion algorithms which seek to mini-
mize the expected number of rekeys for the next member eviction or compro-
mise event. The first algorithm does not induce any additional computational
cost over the basic balanced-tree LKH insertion. The second algorithm pro-
vides further improvement over the first algorithm in message complexity but
induces an O(n) computational overhead on the insertion operation in an
n-member tree.

Algorithm 1: The first algorithm, Insert;, organizes the LKH tree in a way
which imitates the Shannon-Fano data compression trees. In Shannon-Fano
coding [4], a tree is constructed from a given set of probabilities by dividing
the set into two parts of roughly equal probability repeatedly until every set
includes a single element. The fundamental principle of Insert; is to insert a

new node in a way which obtains the best partitioning at every level so that the
resulting tree will have an average path length close to the optimality bound
of — 3", p;log p;. The algorithm is described in Figure 3. To insert member M
in a tree with root node R, the procedure is called as Insert;(M, R).

Insert;(member M, node X):
if X is a leaf node
Put(M, X);
else if (M.p > X.left.p) and (M.p > X.right.p)
Put(M, X);
else if (X.left.p > X.right.p)
Insert; (M, X.right);
else
Insert; (M, X.left);

Fig. 3. Algorithm Insert;. It tries to keep the subtree probabilities as balanced as
possible at every level.

Algorithm 2: The second algorithm, I'nserts, finds the best insertion point
for member M by searching all possible insertion points in the tree. The
amount of increase in the average external path length that will be caused
by Put(M, X) at node X of depth d is equal to d M.p + X.p. The algorithm
Inserty searches the whole tree to find the location that minimizes this quan-
tity. In Figure 4, d(X) denotes the depth of node X in tree 7.

Inserty(member M, tree T):
Costyip +— 00
for each X € T do
Cost| X] + d(X)M.p+ X.p
if Cost[X] < Costmin
Xmin +~— X
Co8tmin < Cost[X]
PUt(M, Xrnin)

Fig. 4. Algorithm Inserty. It searches the whole tree for the insertion location that
would minimize the increase in the average external path length of the tree.

Computational performance of Inserts can be improved by taking shortcuts in
finding Xpin. For example, when X.p < M.p the subtree under X need not be
searched. More sophisticated shortcuts which improve the performance further
are also possible. But in the worst case, C'ost[X] will need to be computed
for all nodes in the tree. Nevertheless, the formula for Cost[X] is quite simple
and can be computed quite efficiently. So, when the computation power of the
server is plentiful and the bandwidth is scarce, Inserts can be the method of
choice which obtains improved reduction in number of rekeys at the expense
of computational cost.

10

6 A Redundancy Bound for Insert; Trees

In this section, we prove a bound on the maximum redundancy of a tree that is
created with Insert; (henceforth an Insert; tree). We first prove that a node
at depth d in an Insert; tree must have a probability less than or equal to
1/F4, where Fy is the dth Fibonacci number, defined by the recurrence Fy = 1,
Fi=1,F = F,_1+ Fi_o for i > 2. Then we show that the redundancy of the
tree is bounded by approximately 0.3 times the average external path length
of the tree.

In the following discussion, d(X) denotes the depth of a node X in the tree,
P(X) denotes the probability of X, T(X) denotes the subtree rooted at X,
and s[X], f[X], u[X], and g[X] denote the nodes that are sibling, parent, uncle
(i.e. the sibling of the parent), and grandparent to X in the tree respectively.

Definition 1 An Insert, tree is a binary tree that is created by a sequence of
Insert, operations, with no deletion operations in between.

Lemma 2 For any node X with depth d(X) > 2 in an Insert; tree,

P(u[X]) = P(X).

PROOF. We prove the result by induction on the insertions into the tree.
Let U, F, and S denote the nodes u[X], f[X], and s[X]| respectively.

The base case is the insertion operation where U becomes X’s uncle for the
first time. This event can happen as a result of the insertion of either U, X,

orS.

— If U is the node just inserted, then for its being inserted as a sibling to
F it is necessary that P(U) > P(X) as well as P(U) > P(S).

— If X is the node just inserted, and it is inserted into the subtree adjacent
to U, then P(X) < P(U) as well as P(U) > P(S5).

— If S is the node just inserted, and it is inserted into the subtree adjacent
to U, then P(S) < P(U) as well as P(U) > P(X).

In all three cases, P(U) > P(X) must be true for U to become the uncle of
X.

In future insertion operations, the relative proportion of P(U) and P(X) is
changed if and only if a new node is put either into 7'(U) or into T'(X).

Assume a new node is inserted into 7'(U) at a time when P(U) > P(X) is
already true. Then P(U) gets even larger by this insertion, and P(U) > P(X)
is still true.

11

Assume a new node N is inserted into 7(X), hence into T(F'). Then the
following must have been true before the insertion:

Let P’ denote the probabilities after the insertion, whereas P is used for the
probabilities before the insertion.

P'(X)=P(X)+ P(N)
< P(X) + P(S5)
=P(F)
<P(U)
=P'(U)

Hence, P(U) > P(X) remains true whether a new node is inserted into 7'(U)
orinto T'(X). O

Corollary 3 For any node X with depth d(X) > 2 in an Insert; tree,
P(g[X]) > 2P(X).

Theorem 4 Let a;[X], i > 1, denote the i" generation ancestor of node X
in an Insert; tree. Then,

P(X) 1

PlaX]) ~ 7

where F; is the i Fibonacci number, defined by the recurrence Fo = 1, F; =1,
Fi=Fi1+ Fio fori > 2.

PROOF. For i = 1, the result is trivial: For any ancestor A of any node X,
it is necessarily true that P(A) > P(X), and so is it for a;[X]. Therefore,

P(X) 1

——<1=—.
P(a1[X]) — Fi
For ¢ = 2, the result follows from Corollary 3:

PX)
P(a[X1)

1

1
< — = —.
- 2 Fo

12

For ¢ > 2, the result is proven by induction:

P(a;[z]) = P(a;—1[z]) + P(ula;—2[z]])
P(a;1[z]) + P(ai—2[z])
Fi1 P(X) + Fis P(X)

FiP(X). O

IV IV IV

Theorem 5 For any node X in an Insert, tree,

(1)

PROOF. For a node X at depth 1 or deeper in the tree, the statement is a
corollary of Theorem 4 since the root node is the d(X)th degree ancestor of
X with probability 1. The only exception of this is when X is the root itself,
where d(X) = 0, P(X) = 1. Equation (1) is satisfied in this case as well, since
P(root) =1=1/F. O

The closed formula for the Fibonacci numbers is

1 i+1 i+1
Fi = ﬁ (O/ -p) (2)

where a = (1 +v/5)/2 ~ 1.618, 8 = (1 — v/5)/2 ~ —0.618. One consequence
of (2) is that, since 37+!/y/5 < 0.5 for i > 0, F; is equal to o/*!//5 rounded
to the nearest integer. For relatively large i, the difference between F; and
o’*1/4/5 is extremely small, and in logarithmic scale the difference is negligible
for i > 2.

Before we proceed with the proof of the redundancy bound, let us define the
redundancy of a node X to be the difference d(X) — (—log P(X)). We write
R(X) to denote this difference.

Lemma 6 The redundancy of a node X in an Insert, tree is bounded by
(1 —loga)d(X) + log(v/5/a) ~ 0.306d(X) + 0.467.

PROOF.

13

~d(X) + log (W)

=d(X)(1 —log) + log(vV5/a).
~0.306d(X) + 0.467. O

Theorem 7 The upper bound for the redundancy of an Insert, tree is ap-
prozimately

0.306 - AEPL + 0.467,

where AEPL denotes the average external path length of the tree (i.e. the
summation Y, p;d; over the leaf nodes).

PROOF. The redundancy of the tree is

Zpidi = Zpi(— log p;) = Zpi(di + log p;)
<> pi (di(1 ~ loga) + log(v/3/))

~ 0.306 (Z p,-d,-> +0.467. O

Like the similar bounds on Huffman and Shannon-Fano trees [8,4], the bound
given in Theorem 7 is not tight in the sense that most Insert; trees have a
much less redundancy than that is suggested by this bound. For now, we leave
finding a tighter redundancy bound as an open problem.

A more important limitation for the use of the bound in Theorem 7 as a
practical performance measure is that, as stated in Definition 1, this bound is
derived for a tree with no deletion operation in its construction. When deletion
operations are possible, there is no bound on the redundancy of any tree
that does not allow relocation of members, including the Insert; and Inserty
trees. For such cases, where there is no bound on the worst-case behavior,
an average-case analysis is more applicable rather than a worst-case analysis.
For the average performance of the LKH trees, obtaining an analytical result
is difficult since the average performance is a complicated function of the
join, leave, and compromise time distributions of all potential members in the
system. We use computer simulations to evaluate the practical performance
of the algorithms. The simulation experiments and their results are discussed
in Section 8.

14

7 Weights other than Probabilities

To use the insertion algorithms as described above, it is crucial to know the
p; values of all members in the tree at insertion time. This requirement is not
practical since computing the p; values would require the knowledge of the
rekey time probability functions of all members in the tree. Moreover, even if
the rekey time probability functions are known for all members, the p; values
will change continuously as members stay in the group (unless the probability
functions are memoryless) which further hinders the usage of actual probabil-
ity values.

In this section, we discuss an alternative weight assignment technique to use
with the insertion algorithms. First we note that the Insert; and Inserty
algorithms, as well as Huffman and Shannon-Fano coding, can dispense with
the restriction that Y, p; = 1 and can work with any non-negative weights w;,
as long as the relative proportions are kept the same. Corresponding p; values
that satisfy 3; p; = 1 can be calculated as p; = w;/W, where W = Y, w;.

The weight assignment of our choice for the insertion algorithms is the inverse
of the mean inter-rekey time of members; i.e.,

where p; is the average time between two rekeys by member M;. There are
two reasons for our choice of 1/u; as the weight measure among many other
candidates:

(1) Its simplicity and convenience

(2) In the special case where the members’ inter-rekey time distributions are
exponential, p; = w; /W gives exactly the probability that M; will be the
next member to rekey.

Moreover, the estimation of the y; values can be done quite efficiently from the
average of past rekey times of members, which should be maintained anyway
if a probabilistic LKH organization will be implemented. More sophisticated
estimates of 1; can be obtained by further analysis of the members’ behavior.

8 Simulation Experiments

We tested the performance of Insert; and Insert, with a large number of
computer simulations. The simulations are run in four different scenarios,
classified with respect to a number of group characteristics. In one division,

15

the multicast groups are classified as terminating vs. non-terminating groups.
Terminating groups exist for a specified time period, whereas the lifetime of
a non-terminating group is practically infinite. In another division, groups
are classified according to the membership dynamics as dynamic, static, or
semi-static groups. In dynamic groups, members join and leave the group
continually and the main source of rekey operations is the leaving members.
In static groups, members join the group at the beginning of the session and
remain—or, at least, keep their access rights—till the end. No rekeying is
needed for leaving members in these groups, and all rekeys are due to com-
promised members. Semi-static groups are similar to static groups in that all
members keep their access rights till the end of the session. But they are dif-
ferent in member arrivals; new members keep arriving throughout the session
according to a Poisson distribution. Both static and semi-static groups are
typically terminating groups.

There are two main sources of randomness in the simulations regarding the
rekey times of group members:

(1) Variation among group members. Mean inter-rekey time, i.e., the average
time period between two rekey events by a member, varies among group
members. The mean inter-rekey time values, denoted by p; for member
M;, are distributed according to a source probability distribution function,
Dg, with a mean value of ug.

(2) Randomness within a member. The time of the next rekey event by each
member is a random variable, distributed by a rekey probability distribu-
tion function, Dg, with mean p; for member M;.

So, when a new member M; joins a group in the simulations, first it is assigned
a u; value from Dg, and then it generates the times of future rekey events
according to p; and Dg. Regarding the variance of the distributions Dg and
Dg, a parameter c,, called the wvariance factor, is used which denotes the
standard deviation of a distribution in terms of its mean, i.e. 0 = ¢, p.

The following list summarizes the notation used for the group parameters:

T': lifetime of the session
A4: arrival rate of new members
Dgs: source probability distribution function for u; values

is: mean value for Dg

The following list summarizes the notation used for the rekey time of individual
members:

16

t;: next rekey time for member M;
(i mean inter-rekey time for member M;

Dg: probability distribution function for the inter-rekey time of
individual members

In the simulations, we used many different distribution functions and many
different variance factors for Dg and Dpg. The tests showed that the form of
the distribution functions (i.e. their being normal, uniform or exponential) has
little effect on the performance results. Similarly, the variance factor of Dpg
also turned out to have very little effect on the results. The single most im-
portant factor affecting the performance results turned out to be the variance
factor of Dg; i.e. the variance in the group members’ mean inter-rekey times.
Unless otherwise is stated, the simulations presented below use the normal
distribution for Dg and Dy with a fixed variance factor of 0.5 for Dg, which
is a good representative of the average case. In the following figures, c, is used
exclusively to denote the variance factor of Dg.

8.1 Simulation Results

During each simulation run, three LKH trees are maintained for the multicast
group, one for each insertion algorithm. The performance of each algorithm is
calculated as the number of keys updated by member compromise and eviction
events. The following results show the number of key updates in the trees of
Insert; and Insert, as a ratio of the key updates in the basic balanced LKH
tree. The presented results are the averages calculated over 100 randomly
generated simulation runs for every data point. Due to space limitations, the
results given here are only for a set of selected parameters. For a more complete
account of the simulation results, please see Appendix A.

8.1.1 Scenario 1

The first scenario we consider is a terminating, static group. All members join
the group at the beginning of the session and stay till the end of the session.
The important parameters in this scenario are the size of the group, n, the
lifetime of the session, 7', and the average inter-rekey time of the members,
us. In fact, nominal values of 7" and pugs do not matter and the important
parameter is their ratio 7'/ug, which we denote by c¢r. Roughly speaking,
cr denotes the number of rekeys an average member would cause during the
lifetime of the session. The simulation results for this scenario are summarized
in Figure 5.

17

20 —— 20 ——
10 10
Cr=05 cr=05
) oy
¥ g
S o8 S o8
g 087 g O
8 8
o \ S
& S & -
06 : 06 : :
0 05 1 0 05 1
CG CU
(a) Insert; (b) Insert,

Fig. 5. Simulation results for Scenario 1 with n» = 10,000. Rekey costs of Insert;
and Inserty are shown as a ratio of the rekey costs of the balanced LKH tree. The
improvement figures depend heavily on ¢, the variation in the member rekey rates.
Rekey costs can be reduced significantly by the insertion algorithms when c, is
relatively large. The session lifetime factor c¢r also affects the performance, but its

impact is relatively less significant.

! 20 —— ! 20 ——
10 10
Cr=05 cr=05
) oy
¥ ¥
S o8 S o8
g 087 g 087
8 8
o S \
& s & e
06 ‘ 06 ‘
0 05 1 0 05 1
CO' CU
(a) Insert; (b) Inserty

Fig. 6. Simulation results for Scenario 2 with TA4 = 10,000. As in Scenario 1, the
algorithms provide significant improvements when there is a significant variation in
the rekey rates of the members (i.e. large values of ¢,).

8.1.2 Scenario 2

In the second scenario, we consider a terminating, semi-static group. Members
join the group at a constant rate according to a Poisson distribution, and

18

joining members remain in the group till the end of the session. Important
parameters for this scenario include the lifetime of the session in terms of the
mean inter-arrival time, T/(1/)A4) = TA4 2, and in terms of the average inter-
rekey time of the members, T'/ g, denoted by cr. The results are summarized

in Figure 6.

8.1.3 Scenario 3

The third scenario we consider is a terminating, dynamic group. Members join
and leave the group at a certain rate till the end of the session. All rekeys are
due to leaving members and there are no additional compromise events. Hence,
inter-rekey parameters such as pg and p; should be interpreted as parameters
for the member lifetime (i.e. time of stay in the group). The test parameters
are similar to those in Scenario 2. The results are summarized in Figure 7.

) oy
¥ ¥
S o8 S o8
g 98/ g 98]
8 8
% S
& &
20 —— 20 ——
05 . o5 .
Cr=05 s =
06 T 06 .o
0 05 1 0 05 1
CO' CU
(a) Inserty (b) Inserty

Fig. 7. Simulation results for Scenario 3 with T'A4 = 10, 000. Similar to the previous
scenarios, high improvement rates are obtained for larger values of ¢,. However, the
improvement rates are lower than those in Scenario 1 and 2. This is mainly due to
the fact that all rekeys here are caused by member departures; hence, each member
causes at most one rekey. When the session is significantly longer than the average
member stay time (i.e. larger values of ¢r), most members cause exactly one rekey
event and the variation in the mean stay time becomes less significant.

2 Intuitively, TA4 shows the mean number of members to join the group till the
end of the session.

19

8.1.4 Scenario 4

The fourth scenario we consider is a long-term dynamic group. The session
lifetime 7" is practically infinite. Members join and leave the session at a cer-
tain rate. All rekey operations are due to departing members. The important
parameter in this case is the average member lifetime in terms of the average
inter-arrival time, ps/(1/Aa) = psAa. In the steady state [13], the depar-
ture rate is equal to the arrival rate, and hence, the group has an average
of n = pusA4 members. The measurements are taken over 10,000 consecutive
rekey operations in the steady state. The results are summarized in Figure 8.

g e 1
oy o)
: :
ks B
w 08 w 08|
Q Q
o o
) S
8 B
4 4
10, —— 10, ——
103 03
06 Hghp =107 - 06 Hghp =10
0 05 1 0 05 1
Cq Co
(a) Insert; (b) Inserty

Fig. 8. Simulation results for Scenario 4. The improvement rates are quite modest
compared to those for Scenarios 1, 2 and 3.

8.2 Comments on Results

The test results show that the algorithms for probabilistic LKH organization
make the biggest difference when there is a significant variation in the rekey
rates of the group members (i.e. large ¢, in Dg) and also when there are com-
promise events in addition to those caused by leaving members (e.g. Scenarios
1 and 2). In these cases, the algorithms provide up to 40% reduction in the
cost of rekey operations. Larger group sizes also contribute positively to the
reduction rates.

When the main source of rekeys is leaving members (i.e. Scenarios 3 and 4),
the algorithms provide significant gains if average member inter-rekey time pg
is close to the session time or longer (i.e. the smaller values of ¢r in Scenario
3); because in this case most rekey events come from short-living members
allocated closer to the root of the LKH tree. If the session time is significantly

20

longer than pg while the main source of rekeys is member evictions (Scenario 4,
larger values of ¢ in the Scenario 3), then members allocated deeper in the
tree also contribute to the rekey events, and the improvement rates obtained
by the algorithms drop to 5% or less.

We would like to note that in all these simulations it is assumed that the
overall space of potential members is so large that the distribution of the
joining members is unaffected by the leaving members of the group, which is
practically equivalent to the case where leaving members never return. For ex-
ample, in Scenario 3 and 4, the improvement figures are relatively low, mainly
because even the most dynamic member causes a single rekey at most. So,
our simulation scenarios do not represent the cases where a few very dynamic
members can affect the rekey dynamics significantly by frequent join and leave
operations. In such cases, the probabilistic insertion algorithms can provide
significant gains even when all rekey operations are due to leaving members
as in Scenario 3 and 4.

Finally, it is interesting to note that the improvement figures obtained by
Insert;, which does not induce any additional computational cost over the ba-
sic balanced-tree LKH insertion, are consistently very close to those obtained
by Inserts, which searches the whole tree for the best insertion point. This, in
our opinion, indicates the strength of the basic idea underlying Insert;, that
is to keep the subtree probabilities as balanced as possible.

9 Conclusions

In this paper, two algorithms are described which can reduce the cost of mul-
ticast key management significantly, depending on certain characteristics of
the multicast group. The algorithms described here are not specific to the
basic LKH scheme of Wallner et al. [23] but are also applicable to the more
sophisticated LKH-based techniques such as the OFT scheme of McGrew and
Sherman [15] and the OFC scheme of Canetti et al. [6]. The algorithms can
work with relatively small computational overhead (and no overhead in case
of Insert;) and can provide significant reductions in the message complexity
of rekey operations. The improvements can be significant or modest, depend-
ing on certain characteristics of the group, as suggested by the simulations on
different multicast scenarios in Section 8.

The requirement of using actual probabilities for tree organization can be a
major limitation for probabilistic LKH organization techniques. Instead of us-
ing the actual probabilities, we suggest using a heuristic weight assignment
technique, which is described in Section 7. Simulations summarized in Sec-
tion 8, which were implemented with this weight assignment technique, show

21

that this heuristic method works effectively in practice.

The studies of Almeroth and Ammar [1,2] about the behavior of multicast
group members in the MBone show that significant differences may exist
among the members of a group. When significant differences exist among the
group members and it is practical to maintain data regarding past behavior
of the members, the algorithms discussed in this paper can provide significant
reductions in the cost of rekey operations in multicast key management.

Acknowledgments

We would like to thank Eric Harder and Chris McCubbin for many helpful
suggestions and informative discussions.

References

[1] K. Almeroth and M. Ammar. Collection and modeling of the join/leave behavior
of multicast group members in the MBone. In High Performance Distributed
Computing Focus Workshop (HPDC’96), August 1996.

[2] K. Almeroth and M. Ammar. Multicast group behavior in the Internet’s
Multicast Backbone (MBone). IEEE Communications, 35(6), June 1997.

[3] A. Ballardie. Scalable multicast key distribution, May 1996. Internet RFC
1949.

[4] T. C. Bell, J. G. Cleary, and 1. H. Witten. Text Compression. Prentice-Hall,
1990.

[65] M. Burmester and Y. Desmedt. A secure and efficient conference key
distribution system. In Alfredo De Santis, editor, Advances in Cryptology—
Eurocrypt’9/, pages 275-286. Springer-Verlag, 1994.

[6] R.Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas. Multicast
security: A taxonomy and some efficient constructions. In Infocomm’99
Conference, 1999.

[7] A. Fiat and M. Naor. Broadcast encryption. In Douglas R. Stinson, editor,
Advances in Cryptology— CRYPTO 93, pages 480-491. Springer-Verlag, 1993.

[8] R. G. Gallager. Variations on a theme by Huffman. IEEE Trans. Information
Theory, 24:668-674, 1978.

[9] T. Hardjono, B. Cain, and N. Doraswamy. A framework for group key
management for multicast security, February 2000. Internet draft (work in
progress).

22

[10] H. Harney, C. Muckenhirn, and T. Rivers. Group key management protocol
specification, July 1997. Internet RFC 2093.

[11] D. Huffman. A method for the construction of minimum redundancy codes.
Proceedings of the IRE, 40(9):1098-1101, 1952.

[12] D. E. Knuth. Dynamic Huffman coding. Journal of Algorithms, 6:163-180,
1985.

[13] A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill,
3rd edition, 2000.

[14] M. Luby and J. Staddon. Combinatorial bounds for broadcast encryption. In
Advances in Cryptology—EUROCRYPT ’93. Springer-Verlag, 1998.

[15] D. A. McGrew and A. T. Sherman. Key establishment in large dynamic groups
using one-way function trees. Technical Report 0755, TIS Labs, May 1998. A
revised version to appear in the IEEE Transactions on Software Engineering.

[16] S. Mittra. Iolus: A framework for scalable secure multicasting. In Proceedings
of the ACM SIGCOMM’97 Conference, September 1997.

[17] R. Poovendran and J. S. Baras. An information theoretic analysis of rooted-tree
based secure multicast key distribution schemes. In Advances in Cryptology—
Crypto’99. Springer-Verlag, 1999.

[18] S. Saeednia and R. Safavi-Naini. Efficient identity-based conference key
distribution protocols. In Proceedings of Information Security and Privacy
Conference, ACISP’98. Springer-Verlag, 1998.

[19] Ali Aydin Selguk and Deepinder Sidhu. Probabilistic methods in multicast key
management. In Information Security Workshop 2000, pages 179-193. Springer-
Verlag, Wollongong, Australia, December 2000.

[20] C. E. Shannon. A mathematical theory of communication. Bell Systems
Technical Journal, 27:329-423, 1948.

[21] M. Steiner, G. Tsudik, and M. Waidner. CLIQUES: A new approach to group
key agreement. In International Conference on Distributed Computing Systems,
pages 380-387. IEEE Computer Society, 1998.

[22] Jeffrey S. Vitter. Design and analysis of dynamic Huffman codes. Journal of
the ACM, 34:825-845, 1987.

[23] D. Wallner, E. Harder, and R. Agee. Key management for multicast: Issues and
architectures, July 1997. Internet draft (work in progress).

[24] C. K. Wong, M. Gouda, and S. S. Lam. Secure group communication using
key graphs. In Proceedings of the ACM SIGCOMM’98 Conference, September
1998.

23

A Simulation Results in Detail

The following tables summarize the simulation results for different values of
the test parameters. The presented results are the averages calculated over
100 randomly generated simulation runs for every data point. I; and I, denote
Insert; and Insert, respectively.

Scenario 1:
CT:0.5 CT:1 CT:2 CT:4
Co Il .[2 _[1 _[2 Il .[2 _[1 .[2
(a) n = 10? 0.11.99].981{.99|.981 .99 .99 | .99 .99

0.5 .79 | .76 || .79 | .78 || .87 | .85 || .89 | .88
1.0 || .66 | .63 || .74 | .72 || .76 | .74 | .75 | .74

(b) n =10? 0.1].99].991 .99 .99 | .99|.99] .99 .99
0.5 .73 .72 || .81 | .80 || .84 | .83 | .85 | .84
1.0 | 65| .63 .69 | .68 | .73 |.72 || .72 | .71

(c) n=10* 0.1].991].991 .99 .99 || .99 .99 .99 .99
0.5 .69 | .67 .71 .70 || .75 | .74 | .73 | .73
1.0 | .62 | .61 .67 | .67 || .69 | .68 || .69 | .69

Scenario 2:
CT:0.5 CT:1 CT:2 CT:4
Cy Il .[2 _[1 _[2 Il .[2 Il _[2
(a) Thp =102 0.1.991.99(.99|.99|.99|.99 | 1.00 | 1.00

0.5 .80 | .77 .81 |.78 || .84 | .83 | .88 | .86
1.0 || .64 | .61 | .70 | .67 | .76 | .73 | .78 | .76

(b) TAp = 10? 0.1].991].99 1 .99].99 || .99 | .99 | 1.00 | 1.00
05| .72 .70 || .75 | .74 || .82 | .81 | .81 | .80
1.0 .61 |.59 | .65 | .63 .66 | .64 | .70 | .68

(c) TAs = 10* 0.1].991].991 .99 .99 | .99].99 | 1.00 | 1.00
0.5 || .67 .65 .72 .71 | .74 | .73 || .78 | .78
1.0 | 63| .61 .65|.63| .65| .64 | .64 | .63

24

Scenario 3:

(a) T)\A = 102

(b) Thy = 103

(C) T/\A = 104
Scenario 4:

cr=051 er=1 cr =2 cr =4
Co L | I, L | I L | I I I
0.1 .99 .98 .98{.98| .99 (.99 | 1.00 | .99
0.5 .83] .80 .87 (.85 .92 |.91| .95 | .93
1.0 || .73 | .68 || .79 | .76 || .88 | .84 || .90 | .87
0.1.99].99].99(.991 .99].99 | 1.00 | .99
0.5 .88].86(.92 |.90| .95|.94| .97 | .96
1.0 .81 |.79| .87 | .84 || .91 | .89 || .93 | .91
0.1.99].991.99.99 | .99|.99 | 1.00 | 1.00
0.51.92].90(.94 .93 | .96|.96| .97 | .97
1.0 .86 .85 .90 |.89 || .93 |.92 | .95 | .94
psAa =107 | psha = 10% | pgAq = 10*
Co L I, L I, L I,
0.1] 1.00 | 1.00 || 1.00 | 1.00 || 1.00 | 1.00
0.5 0.98 | 0.97 || 0.98 | 0.98 | 0.98 | 0.98
1.0 11095 | 094 || 097 | 0.95 || 0.98 | 0.96

25

