Probabilistic Methods in
Multicast Key Management*

Ali Aydin Selguk and Deepinder Sidhu

Maryland Center for Telecommunications Research
Department of Computer Science and Electrical Engineering
University of Maryland Baltimore County
Baltimore, MD, 21250, USA
{aselcul,sidhu}@umbc.edu

Abstract. The Logical Key Hierarchy (LKH) scheme and its deriva-
tives are among the most efficient protocols for multicast key manage-
ment. Traditionally, the key distribution tree in an LKH-based protocol
is organized as a balanced binary tree, which gives a uniform O(log n)
complexity for compromise recovery for an n-member group. In this pa-
per, we study improving the performance of LKH-based key distribution
protocols by organizing the LKH tree with respect to the members’ rekey-
ing probabilities instead of keeping a uniform balanced tree. We propose
two algorithms which combine ideas from data compression with the spe-
cial requirements of multicast key management. Simulation results show
that these algorithms can reduce the cost of multicast key management
significantly, depending on the variation of rekey characteristics among
group members.

1 Introduction

One of the biggest challenges in multicast security is to maintain a group key
that is shared by all the group members and nobody else. The group key is used
to provide secrecy and integrity protection for the group communication. The
challenge of maintaining such a group key becomes greater when the groups are
large and highly dynamic in terms of membership.

Currently, the most efficient methods for multicast key management are
based on the Logical Key Hierarchy (LKH) scheme of Wallner et al. [18] (also
independently discovered by Wong et al. [19]). In LKH, group members are or-
ganized as leaves of a tree with logical internal nodes. The cost of a compromise
recovery operation in LKH is proportional to the depth of the compromised mem-
ber in the LKH tree. The original LKH scheme proposes maintaining a balanced

* This research was supported in part by the Department of Defense at the Maryland
Center for Telecommunications Research, University of Maryland Baltimore County.
The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or
implied, of the Department of Defense or the U.S. Government

tree, which gives a uniform cost of O(logn) rekeys for compromise recovery in
an n-member group.

In this paper, we study improving the performance of LKH-based key dis-
tribution protocols by organizing the LKH tree with respect to the members’
rekeying probabilities instead of keeping a uniform balanced tree. This prob-
lem was first pointed out by Poovendran and Baras in Crypto’99 [15]; but no
solutions have been proposed to date. We propose two algorithms which com-
bine ideas from data compression with the special requirements of multicast key
management. Simulation results show that these algorithms can reduce the cost
of multicast key management significantly, depending on the variation of rekey
characteristics among group members.

We first start by an analysis of the probabilistic LKH optimization problem
(Sections 2, 3). Then we describe two algorithms for this problem and discuss
their design rationale (Sections 4, 5, 6). We summarize the simulation results in
Section 7. In Section 8, we conclude with a discussion of the issues regarding an
effective utilization of these algorithms.

1.1 Related Results

Group key establishment protocols can be classified as (contributory) group key
agreement protocols and (centralized) group key distribution protocols. Most
group key agreement protocols are multi-party generalizations of the two-party
Diffie-Hellman key agreement protocol [5, 17, 16]. They have the advantage of
doing without an active key management authority; but they also require quite
intensive computation power, proportional to the size of the group. Therefore,
group key agreement protocols are mostly used for relatively smaller groups
(i.e. with 100 members or less).

In Internet multicasting, groups are typically large, and there is an active
group manager available. Therefore, most multicast key management protocols
are based on centralized key distribution protocols. In the Group Key Man-
agement Protocol (GKMP) of Harney et al. [9], each group member obtains
the group key by a unicast communication with the group key manager. This
protocol has the disadvantage of having to re-initialize the whole group when
a member is compromised (possibly due to a departure). A similar but more
scalable protocol is the Scalable Multicast Key Distribution (SMKD) protocol
proposed by Ballardie [3]. In this protocol, the key manager delegates the key
management authority to routers in the Core-Based Tree (CBT) multicast rout-
ing. The protocol has the disadvantage of requiring trusted routers and being
specific to the CBT routing protocol. The Iolus protocol [14] deals with the scal-
ability problem by dividing the multicast group into subgroups. Each subgroup
has its own subgroup key and key manager, and rekeying problems are localized
to the subgroups. The multicast group is organized as a tree of these subgroups,
and translators between neighbor subgroups help a multicast message propagate
through the tree. A similar approach is a group key management framework pro-
posed by Hardjono et al. [8], where the group members are divided into “leaf
regions” and the managers of leaf regions are organized in a “trunk region”. The

key management problem is localized to the regions, and inter-region communi-
cation is maintained by “key translators”. This framework provides a scalable
solution for key management in large multicast groups.

Currently, the most efficient multicast key distribution protocols which enable
all group members to share a common key not known to anyone outside the group
are based on the Logical Key Hierarchy (LKH) protocol and its variants. LKH-
based protocols, as will be discussed in more detail in Section 2, have the ability
to rekey the whole group with O(logn) multicast messages when a member is
compromised. The LKH structure was independently discovered by Wallner et
al. [18] and Wong et al. [19]. Modifications to the basic scheme which improve
the message complexity by a factor of two with a relatively small computational
overhead have been proposed in [13, 6]. Certain similarities between LKH trees
and some information-theoretic concepts have been pointed out in [15].

Another different class of group key distribution protocols is the Broadcast
Encryption protocols [7]. These protocols guarantee the secrecy of the key against
coalitions of up to a specified number of outsiders. Luby and Staddon [12] prove
a lower bound for the storage and transmission costs for the protocols in this
class, which is prohibitively large for most cases.

1.2 Notation

The following notation is used throughout this paper:
n|number of members in the group
M;|ith member of the group
d;|depth of M; in the LKH tree
pi|probability of M; being the next member to cause
a rekey (due to a departure, compromise, etc.)
All logarithms are to the base 2, and i in summations), ... ranges from 1 to n,
unless otherwise is stated.

2 The LKH Scheme

The LKH scheme organizes the members of a multicast group as leaves of a key
distribution tree where the internal (non-leaf) nodes are “logical” entities which
do not correspond to any real-life entities in the multicast group and are only
used for key distribution purposes. There is a key associated with each node
in the tree, and each member holds a copy of every key on the path from its
corresponding leaf node to the root of the tree. Hence, the key corresponding to
the root node is shared by all members and serves as the group key. An instance
of an LKH tree is shown in Figure 1.

In this figure, member M; holds a copy of the keys Koo, Koo, Ko, and Kgoot;
member Ms holds a copy of Koo1, Koo, Ko, and K pgoot; and so on. In case of a
compromise, the compromised keys are changed, and the new keys are multicast
to the group encrypted by their children keys. For example, assume the keys
of Ms are compromised. First K1 is changed and sent to M over a secure

K Root

Koo Koor Koo Koux Kio Kiw Kip King

M M, Mz My Ms Mg M; Mg

Fig. 1. An example LKH tree with eight members. Each member holds the keys on
the path from its leaf node to the root. Kroot is the key shared by all group members.

unicast channel. Then Ky is changed; two copies of the new key are encrypted
by Koo and Ko and sent to the group. Then K| is changed and sent to the
group, encrypted by Koo and Kg;; and finally K g, is changed and sent to the
group, encrypted by Ky and K;. From each encrypted message, the new keys
are extracted by the group members who have a valid copy of either one of the
(child) encryption keys.

If the security policy requires backward and forward secrecy for group com-
munication (i.e. a new member should not be able to decrypt the communication
that took place before its joining, and a former member should not be able to
decrypt the communication that takes place after its leaving) then the keys on
the leaving/joining member’s path in the tree should be changed in a way similar
to that described above for compromise recovery.

Although an LKH tree can be of an arbitrary degree, most efficient and
practical protocols are obtained by binary trees, and studies in the field have
mostly concentrated on binary trees [18, 13, 6]. We follow the convention and
assume the LKH trees are binary. We also assume that the binary tree is always
kept full (i.e. after deletion of a node, any node left with a single child is also
removed).

3 Probabilistic LKH Optimization

The problem addressed in this paper is how to minimize the average rekey cost
of an LKH-based protocol by organizing the LKH tree with respect to the rekey
likelihoods of the members. Instead of keeping a uniform balanced tree, the
average rekey cost can be reduced by decreasing the cost for more dynamic
(i.e. more likely to rekey) members at the expense of increasing that cost for more
stable members. This can be achieved by putting the more dynamic members
closer to the root and moving more stable members further down the tree.

The rekey operations caused by a periodic key update or a joining member
can be realized by a single fixed-size multicast message using a one-way func-
tion [13]. In this study, we will concentrate on the more costly rekey operations

that are caused by a member compromise or eviction event. The communication
and computation costs of these rekey operations are linearly proportional to the
depth d; of the compromised (or, evicted) member, as ad; + b, a > 0. The exact
values of a and b depend on the specifics of the LKH implementation.

Finding the optimal solution to this problem that will minimize the aver-
age cost of all future rekey operations is not possible in practice since that
would require the knowledge of rekey probability distributions for all current
and prospective members of the group as well as the cost calculations for every
possible sequence of future join, leave, and compromise events. Instead, we con-
centrate on a more tractable optimization problem, that is to minimize the cost
of the nezt rekey operation. The expected cost of the next rekey operation, due
to a leave or compromise event, is equal to

Zpidi (1)

where p; is the probability that member M; will be the next to be evicted /compromised,
and d; is its depth in the tree. This problem has many similarities to the data
compression problem with code trees where the average code length per mes-

sage is), pid;, This quantity), p;d; is known as the average external path
length of the tree, where p; is the probability of message m; to be the next

to appear, and d; is its depth in the code tree. The optimal solution for the
problem of minimizing the average external path length is given by Huffman

trees [4]. Shannon-Fano trees are another alternative solution which give very

good compression in practice but are slightly sub-optimal [4].

3.1 Differences from the Data Compression Problem

In an LKH key distribution tree, a change in the tree structure, such as changing
the location of an existing member in the tree, causes extra rekey operations,
which adversely affects the objective function (i.e. minimizing the average num-
ber of rekeys). On the other hand, in a data compression tree, a structural change
does not directly induce an overhead on the objective function (i.e. minimizing
the average code length). So, changes in the tree structure can be freely utilized
in data compression algorithms, such as dynamic Huffman algorithms [10], to
maintain the optimal tree structure; whereas they cannot be utilized so freely in
dynamic LKH algorithms. Therefore, an LKH scheme with sub-optimal ", p;d;
can have a better overall performance than one that keeps . p;d; minimal all
the time.

Another difference of LKH trees from data compression trees is that, if mem-
ber evictions are the main reason for rekey operations (i.e. if very few compromise
events happen other than member evictions), then each member in the tree will
cause a single rekey operation while it is in the tree.

4 Design Rationale

As discussed above, finding the optimal solution that minimizes the average num-
ber of rekey messages over all future sequences of join, leave, and compromise
events is not possible in practice. Therefore, we focus our attention on mini-
mizing the expected cost of the next rekey event,). p;d;. The proven optimal
solution for minimizing), p;d; is given by a Huffman tree. However, maintain-
ing a Huffman tree requires changes in the locations of the existing members
in the tree, which means extra rekey operations. We choose to avoid this kind
of extra rekey operations and concentrate on algorithms which do not require
changing the location of the existing members.

Given the condition that the locations of existing members will not be changed
in the tree, the main structural decision for the tree organization is where to put
a new member at insertion time. Also, the insertion operation should observe the
current locations of existing members. That is, the keys each member is holding
after an insertion operation should be the same as those it was holding before
the insertion (or the corresponding new keys, for the keys that are changed),
plus possibly some newly added keys to the tree. Therefore, we will focus on in-
sertion operations of the form illustrated in Figure 2, which preserve the relative
location of present members.

Root Root
Y Y
\ PUMX) '\

BN /N
M

Fig. 2. The Put procedure. Relative location of existing nodes are kept the same to
avoid extra rekey operations.

That is, to insert a new member M into the group, a new internal node N is
inserted at a certain location in the tree, and M is linked underneath. To denote
this insertion operation at a given location X for a given new member M, we
will write Put(M, X). Note that the traditional LKH insertion, where every new
member is inserted as a sibling to a leaf node, is a specific case of Put(M, X)
where X is a leaf node.

In our probabilistic LKH trees, each node X in the tree has a probability field
X.p that shows the cumulative probability of the members in the subtree rooted
at X, similar to that in Huffman trees (i.e., X.p is equal to the probability of the
corresponding member if X is a leaf node, and it is equal to X.left.p+ X.right.p

if X is an internal node). The Put procedure shown above also updates the p
field of all nodes affected by the insertion as well as setting up the appropriate
links for M and N.

5 Insertion Algorithms

In this section, we describe two LKH insertion algorithms which seek to minimize
the expected number of rekeys for the next member eviction or compromise
event. The first algorithm does not induce any additional computational cost over
the basic balanced-tree LKH insertion. The second algorithm provides further
improvement over the first algorithm in message complexity but induces an O(n)
computational overhead for an n-member group.

Algorithm 1: The first algorithm, Insert;, organizes the LKH tree in a way
which imitates the Shannon-Fano data compression trees. In Shannon-Fano cod-
ing [4], a tree is constructed from a given set of probabilities by dividing the set
into two parts of (roughly) equal probability repeatedly until every set includes
a single element. Shannon-Fano coding guarantees a maximum redundancy of
1;ie. >, pidi < =, pilogpi + 1, for 3, p; = 1. Even though finding the best
partition is NP-hard, there are many partition heuristics that maintain the re-
dundancy bound of 1. The fundamental principle of Insert; is to insert a new
node in a way which obtains the best partitioning at every level so that the re-
sulting tree will have an average external path length close to the optimal bound
of —3%. pilogp;. The algorithm is described in Figure 3. To insert member M
in a tree with root node R, the procedure is called as Insert; (M, R).

Inserti(member M, node X):

if (M.p > X.left.p) and (M.p > X.right.p)
Put(M, X);

else if (X.left.p > X.right.p)
Inserti(M, X.right);

else
Insert1(M, X left);

Fig. 3. Algorithm Insert;. It tries to keep the subtree probabilities as balanced as
possible at every level.

Algorithm 2: The second algorithm, Insert,, finds the best insertion point
for member M by searching all possible insertion points in the tree. The amount
of increase in the average external path length that will be caused by Put(M, X)
at node X of depth d is equal to d M.p + X.p. Inserty searches the whole tree
to find the location which minimizes this quantity. In Figure 4, d(X) denotes
the depth of node X in tree T'.

Computational performance of Inserts can be improved by taking shortcuts
in finding X pnin. For example, when X.p < M.p the subtree under X need not be

Insertzy(member M, tree T'):

Co8tmin — 00
For each X € T do
Cost[X] «+— d(X)M.p+ X.p
if Cost[X] < Costmin
Xmin — X
CoStmin < Cost[X]
Put(M, Xmin)

Fig. 4. Algorithm Inserts. It searches the whole tree for the insertion location that
would minimize the increase in the average external path length of the tree.

searched. More sophisticated shortcuts which improve the performance further
are also possible. But in the worst case, Cost[X] should be computed for all
nodes in the tree. Nevertheless, the formula for Cost[X] is quite simple and can
be computed quite efficiently. So, when the computation power of the server is
plentiful compared to the bandwidth, Inserts can be the method of choice which
obtains improved reduction in number of rekeys at the expense of computational
cost.

6 Weights other than Probabilities

To use the insertion algorithms as described above, it is crucial to know the
p; values of all members in the tree at insertion time. This requirement is not
practical since computing the p; values would require the knowledge of the rekey
time probability functions for all members in the tree. Moreover, even if the rekey
time probability functions are known for all members, the p; values will change
continuously as members stay in the group (unless the probability functions are
memoryless) which further hinders the usage of actual probability values for
insertion.

In this section, we discuss an alternative weight assignment technique to
use with the insertion algorithms. First we note that the Insert; and Inserts
algorithms, as well as Huffman and Shannon-Fano coding, can dispense with the
restriction that), p; = 1 and can work with any non-negative weights w;, as
long as the relative proportions are kept the same. Corresponding p; values that
satisfy >, p; = 1 can be calculated as p; = w;/W, where W =} w;.

The weight assignment of our choice for the insertion algorithms is the inverse
of the mean inter-rekey time of members; i.e.,

w; = 1/pi (2)

where p; is the average time between two rekeys by member M;. There are
two reasons for our choice of 1/u; as the weight measure among many other
candidates:

1. Tts simplicity and convenience

2. In the special case where the members’ inter-rekey time distributions are
exponential, p; = w;/W gives exactly the probability that M; will be the
next member to rekey.

Moreover, the estimation of the p; values can be done quite efficiently from
the average of past rekey times of members, which should be maintained if a
probabilistic LKH organization will be implemented. In fact, maintaining only
the average value of past inter-rekey times along with their count is sufficient to
estimate the mean inter-rekey time. More sophisticated estimates of u; can be
obtained by further analysis of the members’ behavior.

7 Simulation Experiments

We tested the performance of Insert; and Insert, with a large number of com-
puter simulations. The simulations are run in four different scenarios, classified
with respect to a number of group characteristics. In one division, the multicast
groups are classified as terminating vs. non-terminating groups. Terminating
groups exist for a specified time period, whereas the lifetime of a non-terminating
group is practically infinite. In another division, groups are classified as dynamic
vs. semi-static groups. In dynamic groups, members join and leave the group
continually and the main source of rekey operations is the leaving members. In
semi-static groups, a joining member stays in the group, or keeps the access
rights, till the end of the session. In this case, all rekeys are due to compromised
members. Semi-static groups are typically terminating groups. Another factor
in the classification of the simulations is the joining time of the group members.
Members either join the group at a constant rate, according to an exponential
inter-arrival time distribution, or they all join at the beginning of the session.

There are two main sources of randomness in the simulations regarding the
rekey times of group members:

1. Variation among group members. Mean inter-rekey time, i.e. the average
time period between two rekey events by a member, varies among group
members. The mean inter-rekey time values, denoted by u; for member M;,
are distributed according to a source probability distribution function, Dg,
with a mean value of ug.

2. Randomness within a member. The time of the next rekey event by each
member is a random variable, distributed by a rekey probability distribution
function, Dg, with mean p; for member M;.

So, when a new member M; joins a group in the simulations, first it is assigned
a p; value from Dg, and then it generates the times of future rekey events
according to p; and Dg. Regarding the variance of the distributions Dg and Dpg,
a coefficient c¢,, called the wvariance factor, is used which denotes the standard
deviation of a distribution in terms of its mean, i.e. ¢ = ¢y .

The following list summarizes the notation used for the group parameters:

T'|lifetime of the session
A4 l|arrival rate of new members
Dg|source probability distribution function for u; values
ps|mean value for Dg
The following list summarizes the notation used for the rekey time of individual

members:
t;|next rekey time for member M;

p;|mean inter-rekey time for member M;

Dpg|probability distribution function for the inter-rekey time of individual members

In the simulations, we used many different distribution functions and many
different variance factors for Dg and Dg. The tests showed that the form of Dg
(i-e. its being normal, uniform or exponential) and its variance have very little
effect on the performance results. The tests also showed that the single most
important factor for the performance of the probabilistic LKH algorithms is the
variance factor of Dg (i.e. variation among group members), quite independent
of the form of the function for Dg. Unless otherwise is stated, the presented
simulations use the normal distribution for Dg and Dpg, with a fixed variance
factor of 0.5 for Dy, which is a good representative of the average case. In the
following tables, ¢, is used exclusively to denote the variance factor of Dg.

7.1 Simulation Results

During each simulation run, three LKH trees are maintained for the multicast
group, one for each insertion algorithm. The performance of each algorithm is
calculated as the number of keys updated by member compromise and eviction
events. The tables present the number of key updates in the trees of Insert;
and Insert, as a fraction of the key updates in the basic balanced LKH tree.
The presented results are the averages obtained over one hundred randomly
generated simulation runs. I1 and I> denote Insert,; and Insert, respectively.

Scenario 1 The first scenario we consider is a terminating, semi-static group,
where all members join the group at the beginning of the session. The important
parameters for this scenario are the size of the group, n, the lifetime of the session,
T, and the average inter-rekey time of the members, pg. In fact, nominal values
of T and ps do not matter and the important parameter is their ratio T'/ug,
which we denote by ¢r. Roughly speaking, ¢y denotes the number of rekeys an
average member would cause during the lifetime of the session. The results are
summarized in Table 1.

Scenario 2 In the second scenario, we again consider a terminating, semi-static
group. But this time new members keep joining at a constant rate till the end of
the session. Important parameters for this case include the lifetime of the session
in terms of the mean inter-arrival time, T//(1/A4), and in terms of the average
inter-rekey time of the members, T'/ug. For simplicity, we take the average inter-
arrival time 1/\ 4 as the unit time, so T denotes T/(1/A4). T/us is denoted by
cr. The results are summarized in Table 2.

cr = 0.5||ler = 1|ler = 2|ler =4
co ||| Io ||| L2 || 11|12 || 1| I2
0.1{[.99] .98 |[.99].98(|.99(.991|.99|.99
0.5|[.79| .76 ||.79|.78/|.87|.85]|.89|.88
1.0((.66| .63 |[.74|.72||.76|.74||.75|.74

(a) n = 10?

cr = 0.5||ler = 1|ler = 2|jer =4
co |1 | In ||Ih | Io||I1 | T2 || I1 | I2
0.1([.99] .99 ||.99].99(.99(.99(/.99|.99
0.5(|.73| .72 ||.81|.80||.84(.83||.85|.84
1.0(|.65| .63 ||.69|.68(|.73|.72]||.72|.71

(b) n=10°

cr = 0.5|lcr = 1||ler = 2|ler =4
Co Il I2 Il I2 I1 Ig I1 12
0.1{/.99] .99 {/.99].99](.99|.99(|.99|.99
0.5|].69| .67 ||.70|.70]|.75|.74||.73|.73
1.0(|.62| .61 [|.68|.68](.69|.68(|.69(.69

(c) n=10*

Table 1. Test results for Scenario 1. The results show that the algorithms provide
significant reductions in rekey costs when there is a significant variation among the
rekey rates of the members (i.e. large values of ¢,).

Scenario 3 The third scenario we consider is a terminating, dynamic group. It
is similar to Scenario 2 except that members may leave the group before the end
of the session. All rekeys are due to leaving members and there are no additional
compromise events. Hence, inter-rekey parameters such as pug and p; should
be interpreted as parameters for the member lifetime (i.e. time of stay in the

group). The test parameters are similar to those in Scenario 2. The results are
summarized in Table 3.

Scenario 4 In the fourth scenario, we consider a long-term dynamic group. The
session lifetime T is practically infinite. Members join and leave the session at a
certain rate. All rekey operations are due to departing members. The important
parameter in this case is the average member lifetime in terms of the average
inter-arrival time, pgs/(1/X4). In the steady state [11], the departure rate is equal
to the arrival rate, and hence, the group has an average of n = usA4 members.
The measurements are taken over 10,000 consecutive rekey operations in the

steady state. Again, 1/\4 is taken as the unit time. The results are summarized
in Table 4.

cr = 0.5|ler =1ller =2|| er =4
Co Il Ig I1 Iz I1 .[2 I1 I2
0.1](.99] .99 |{.99(.99(|.99|.99((1.00{1.00
0.5(|.80| .77 ||.81|.78||.84|.83|| .88 | .86
1.0|.64| .61 ||.70|.67||.76|.73|| .78 | .76

(a) T =102

cr = 0.5|lecr =1ller =2|| er =4
co|I1| Io ||| Io||Ih | T2 || I1 | I2
0.1{/.99] .99 ||.99(.99((.99|.99{|1.00{1.00
0.5]|.72| .70 ||.75(.74||.82|.81|| .81 | .80
1.0|[.61| .59 ||.65|.63||.66|.64|| .70 | .68

(b) T = 10°

cr =0.5|lcr =1|lecr =2|| er =4
Co I1 Iz I1 Ig .[1 IQ Il I2
0.1{[.99] .99 |(.99].99({.99(.99||1.00(1.00
0.5(|.67| .65 ||.72|.71}||.74|.73|| .78 | .78
1.0|[.63| .61 |[.65|.64||.65|.64]| .64 | .63

(c) T =10*

Table 2. Test results for Scenario 2. The results resemble those in Table 1. The al-
gorithms provide significant improvements when there is a significant variation among
the rekey rates of the members (i.e. large values of ¢,).

7.2 Comments on Results

The test results show that the algorithms for probabilistic LKH organization
make the biggest difference when there is a significant variance among the rekey
rates of the group members (i.e. large ¢, in Dg) and also when there are com-
promise events in addition to those caused by leaving members (e.g. Scenarios 1
and 2). In these cases, the algorithms provide up to 40% reduction in the cost of
rekey operations. Larger group sizes contribute positively to the reduction rates
as well.

When the main source of rekeys is leaving members, the algorithms provide
significant gains if average member inter-rekey time pg is close to the session
time or longer (i.e. the smaller values of ¢y in the third scenario); because in
this case most rekey events come from short-living members allocated closer to
the root of the LKH tree. When the session time is significantly longer than ug
and the main source of rekeys is member evictions (Scenario 4, or larger values
of ¢r in the Scenario 3), members allocated deeper in the tree also contribute to

the rekey events, and the improvement rates obtained by the algorithms drop to
5% or less.

cr = 0.5)||lecr = 1|ler = 2||er =4
co ||| Lo ||| ||| I2|| I1 | I2
0.1].99| .98 ||.98]|.98|.99(.99((1.00{.99
0.5|[.83| .80 ||.87|.85(|.92(.91]| .95 |.93
1.0{|.73| .68 ||.79|.76]|.88|.84|| .90 |.87

(a) T =102

cr = 0.5)||lcr = 1|ler =2||ecr =4
co | I1| I ||IW ||| 1 | T2 || I1 | I2
0.1](.99] .99 ||.99].99]|.99(.99]{1.00{.99
0.5(|.88| .86 ||.92|.90](.95(.94|| .97 |.96
1.0{(.81| .79 ||.87(.84|.91|.89]| .93 |.91

(b) T = 10°

cr =0.5|lcr =1|lecr =2|| er =4
Co I1 Iz I1 Ig .[1 IQ Il I2
0.1{[.99] .99 |(.99].99({.99(.99||1.00(1.00
0.5][.92| .90 |.94|.93(|.96|.96|| .97 | .97
1.0|.86] .85 |[.90(.89(|.93]|.92| .95 | .94

(c) T =10*

Table 3. Test results for Scenario 3. The improvement rates are more significant for
smaller values of c¢r. The source of the difference from Scenario 2 is that, in this scenario,
all rekeys are due to member departures, so each member causes at most one rekey
event. Hence, when the session is significantly longer than the average member stay
time (i.e. larger values of cr), differences among expected member stay times become
less important.

We would like to note that in all these simulations it is assumed the over-
all space of potential members is so large that the distribution of the joining
members is unaffected by the leaving members (or, the current members) of the
group, which is practically equivalent to the case where leaving members never
return. So, our simulation scenarios do not represent the cases where a few very
dynamic members can affect the rekey dynamics significantly by frequent join
and leave operations. In such cases, the probabilistic insertion algorithms can
provide very significant gains even if all rekey operations are due to leaving
members. Such gains are not reflected in the results of simulation scenarios 3
and 4, where all rekeys are due to leaving members, since the incoming member
parameters in the simulations are independent of those who have left the group.

Finally, it is interesting to note that the improvement figures obtained by
Inserty, which does not induce any additional computational cost over the basic
balanced-tree LKH insertion, are consistently very close to those obtained by
Inserts, which searches the whole tree for the best insertion point. This, in our

s = 107[us = 10°][us = 104|
co |l Ih | In || I1 | Ia Iy | I

0.1//1.00{1.00{|1.00{1.00{|1.00{1.00
0.5({0.98(0.97(|0.98(0.98]{0.98]|0.98
1.0{{0.95(0.94(|0.970.95/{0.98]|0.96

Table 4. Test results for Scenario 4. The improvement rates are quite modest compared
to those for Scenarios 1, 2 and 3.

opinion, indicates the strength of the basic idea underlying Insert;, that is to
keep the subtree probabilities as balanced as possible.

8 Conclusions

In this paper, two algorithms are described which can reduce the cost of mul-
ticast key management significantly, depending on certain characteristics of the
multicast group. The algorithms described here are not specific to the basic LKH
scheme of Wallner et al. [18] but are also applicable to more sophisticated LKH-
based techniques such as the OFT scheme of McGrew and Sherman [13] and the
OFC scheme of Canetti et al. [6]. The algorithms can work with relatively small
computational overhead (and no overhead in case of Insert;) and can provide
significant reductions in the message complexity of rekey operations. The im-
provements can be significant or modest, depending on certain characteristics
of the group, as suggested by the simulations on different multicast scenarios in
Section 7.

The requirement of using actual probabilities for tree organization can be a
major limitation for probabilistic LKH organization techniques. Instead of using
actual probabilities, we suggest using a heuristic weight assignment technique for
the tree organization, which is described in Section 6. Simulations summarized
in Section 7, which were implemented with this weight assignment technique,
show that this heuristic method works effectively in practice.

The studies of Almeroth and Ammar [1, 2] about the behavior of multicast
group members in the MBone show that significant differences may exist among
the members of a group. When significant differences exist among the group
members and it is practical to maintain data regarding past behavior of the
members, we believe the algorithms discussed in this paper can provide signifi-
cant reductions in the cost of rekey operations in multicast key management.

Acknowledgments

We would like to thank Eric Harder and Chris McCubbin for many helpful
suggestions and informative discussions.

References

[1]

[14]

[15]

[16]

[17]

18]

[19]

K. Almeroth and M. Ammar. Collection and modeling of the join/leave behavior
of multicast group members in the mbone. In High Performance Distributed
Computing Focus Workshop (HPDC’96), August 1996.

K. Almeroth and M. Ammar. Multicast group behavior in the internet’s multicast
backbone (mbone). IEEE Communications, 35(6), June 1997.

A. Ballardie. Scalable multicast key distribution, May 1996. Internet RFC 1949.
T. C. Bell, J. G. Cleary, and I. H. Witten. Text Compression. Prentice-Hall, 1990.
M. Burmester and Y. Desmedt. A secure and efficient conference key distribution
system. In Alfredo De Santis, editor, Advances in Cryptology—Eurocrypt’94, pages
275-286. Springer-Verlag, 1994.

R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B. Pinkas. Multicast
security: A taxonomy and some efficient constructions. In Infocomm’99 Confer-
ence, 1999.

A. Fiat and M. Naor. Broadcast encryption. In Douglas R. Stinson, editor,
Advances in Cryptology—CRYPTO 93, pages 480-491. Springer-Verlag, 1993.
T. Hardjono, B. Cain, and N. Doraswamy. A framework for group key manage-
ment for multicast security, February 2000. Internet draft (work in progress).

H. Harney, C. Muckenhirn, and T. Rivers. Group key management protocol spec-
ification, July 1997. Internet RFC 2093.

D. E. Knuth. Dynamic Huffman coding. Journal of Algorithms, 6:163-180, 1985.
A. M. Law and W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill,
3rd edition, 2000.

M. Luby and J. Staddon. Combinatorial bounds for broadcast encryption. In
Advances in Cryptology—EUROCRYPT ’93. Springer-Verlag, 1998.

D. A. McGrew and A. T. Sherman. Key establishment in large dynamic groups
using one-way function trees. Technical Report 0755, TIS Labs, May 1998. A
revised version to appear in the IEEE Transactions on Software Engineering.

S. Mittra. Iolus: A framework for scalable secure multicasting. In Proceedings of
the ACM SIGCOMM’97 Conference, September 1997.

R. Poovendran and J. S. Baras. An information theoretic analysis of rooted-tree
based secure multicast key distribution schemes. In Advances in Cryptology—
Crypto’99. Springer-Verlag, 1999.

S. Saeednia and R. Safavi-Naini. Efficient identity-based conference key distribu-
tion protocols. In Proceedings of Information Security and Privacy Conference,
ACISP’98. Springer-Verlag, 1998.

M. Steiner, G. Tsudik, and M. Waidner. CLIQUES: A new approach to group
key agreement. In International Conference on Distributed Computing Systems,
pages 380-387. IEEE Computer Society, 1998.

D. Wallner, E. Harder, and R. Agee. Key management for multicast: Issues and
architectures, July 1997. Internet draft (work in progress).

C. K. Wong, M. Gouda, and S. S. Lam. Secure group communication using key
graphs. In Proceedings of the ACM SIGCOMM’98 Conference, September 1998.

