
International Journal of Network Security, Vol.6, No.3, PP.235-245, May 2008 235

A Reputation-based Trust Management System

for P2P Networks∗

Ali Aydın Selçuk1, Ersin Uzun2, and Mark Reşat Pariente3

(Corresponding author: Ali Aydın Selçuk)

Department of Computer Engineering, Bilkent University1

Ankara, 06800, Turkey (E-mail: selcuk@cs.bilkent.edu.tr)

Department of Information and Computer Science, University of California, Irvine, CA 92697-3425, USA2

VMware Inc., Palo Alto, CA 94304, USA3

(Received Apr. 6, 2006; revised and accepted May 31, 2006 & July 31, 2006)

Abstract

The open and anonymous nature of a P2P network makes
it an ideal medium for attackers to spread malicious con-
tent. In this paper, we propose a reputation-based trust
management system for P2P networks that aims to build
confidence among the good members of the community
and identify the malicious ones. The proposed system is
simple and efficient in design and can be integrated into
most first generation P2P systems easily. A diverse set
of simulation experiments conducted to test the perfor-
mance of the system show that it can be highly effective
in preventing the spread of malicious content. The pro-
posed system has other potential benefits as well, such
as supporting the detection of free riders in a file sharing
application.

Keywords: P2P network security, reputation systems,
trust management

1 Introduction

A peer-to-peer (P2P) network is a computer network that
does not have fixed clients and servers but a number of
peer nodes that function as both clients and servers to the
other nodes in the network. Although in general any net-
working technology that uses this model can be considered
as P2P, such as the NNTP protocol used for transferring
Usenet news or a wireless ad hoc network, the term is
most frequently used to refer to file sharing networks over
the Internet, such as Gnutella, FastTrack, and Napster.
We also focus on this particular application of the more
general P2P concept in this paper and use the term to re-
fer to P2P file sharing systems unless otherwise is stated.

∗This research is supported in part by the Turkish Scientific and
Technological Research Agency (TÜBİTAK), under grant number
EEEAG-105E065. This research was done while the authors Ersin
Uzun and Mark Reşat Pariente were at Bilkent University.

By the nature of its architecture, a P2P file sharing sys-
tem provides an open, unrestricted environment for con-
tent sharing. This openness of a P2P network also makes
it an ideal environment for attackers to spread malicious
content, such as the VBS.Gnutella worm [14].

Reputation-based systems are used to establish trust
among members of on-line communities where parties
with no prior knowledge of each other use the feedback
from their peers to assess the trustworthiness of members
of the community [13]. One well-known such system is the
rating scheme used by the eBay on-line auction site [8].

In this paper, we propose a reputation-based dis-
tributed trust architecture for P2P networks to identify
malicious peers and to prevent the spread of malicious
content. The protocol is based on the query-response
architecture of the first generation P2P networks and is
suitable for operation in a Gnutella- or Kazaa-like system.
The design is simple and intuitive and, as the simulation
results show, it can be highly effective in preventing the
malicious content.

The rest of this paper is organized as follows: In Sec-
tion 2, we describe the protocol in its basic form. The
rationale for its design is presented in Section 3, and the
security extensions on the basic protocol are discussed
in Section 4. Results of the simulation experiments which
test the protocol’s effectiveness are presented in Section 5.
Section 6 reviews the related earlier work in comparison
to our proposal. Section 7 concludes the paper with a
discussion of the future work necessary for a practical de-
ployment of the proposed protocol.

2 The Basic Protocol

When a resource is queried in a P2P file sharing system,
many responses offering various alternative versions may
be received, among which some may be malicious. An
important security question at this juncture is how to dis-
tinguish the malicious alternatives from the benign ones.

International Journal of Network Security, Vol.6, No.3, PP.235-245, May 2008 236

Our protocol aims to achieve this distinction by evalu-
ating the alternatives according to the reputation of the
peers who offer them. When the reputation information
is not available locally, the P2P infrastructure is used to
query the necessary information over the network.

2.1 Trust Records and Ratings

In our system, the outcomes of past transactions are
stored in trust vectors, maintained by the peers that make
the download. Every peer maintains a trust vector for ev-
ery other peer it has dealt with in the past.

Trust vectors are constant-length, binary vectors of `
bits, where ` is typically 8, 16, or 32. A 1 bit represents
an honest transaction, a 0 represents a dishonest one. An
integer variable accompanies each vector, specifying the
number of significant bits in it. The result of a new trans-
action is written at the most significant bit, shifting the
present bits to the right. The process is illustrated in
Figure 1.

A trust vector with m significant bits is read as an m-
bit integer and divided by 2m for conversion into a scalar
trust rating in the [0, 1) interval.1 A separate distrust
rating is also computed from the complement of the trust
vector, for reasons explained in Section 3. An example
computation of the trust and distrust ratings is shown in
Figure 2.

Throughout the trust evaluation process, the criterion
of minimum distrust is given priority in trust comparisons
over maximum trust. The most trustworthy peer in a
group is taken to be the one with the highest trust rating
among those who have the lowest rating of distrust.

2.2 Resource Query

When a peer is to query a resource, it issues a query mes-
sage which contains, among other fields, a query ID num-
ber (qID) which is a counter value maintained by each
peer to identify its queries. In return, the response mes-
sages sent by the peers with the requested resource in-
cludes,

• ID of the querying peer (QID),

• ID of the responding peer (RID),

• query ID number (qID),

• a one-way hash of the file being offered.

The whole response message is hashed and signed by the
responder. The querier is assured of the authenticity and
freshness of the response by inclusion of the (QID, RID,
qID) triple in the signature. The one-way hash of the file
in the response enables the querier to group the identical
versions together, which is used to evaluate the trust level
of each alternative.

1Here, the use of 2m as the divisor instead of 2m
− 1 enables

distinguishing among the straight-1 trust vectors according to the
length m, favoring longer all-honest histories over shorter ones.

2.3 The Trust Evaluation Function

When responses for a resource query arrive, the query-
ing peer organizes them into groups according to the file
hash value they contain. Then it calculates a trust score
for each version according to the reputation of the respon-
dents as described below:

The threshold θT specifies the number of peers to
be considered for a version’s trust calculation. For a
group of peers G, known(G) denotes the set of peers in
G about whom a trust record is available locally, and
unknown(G) denotes G − known(G). We denote the
cardinalities of these sets by nk(G) = |known(G)| and
nu(G) = |unknown(G)|.

The trust score for a group G is calculated locally if
there is sufficient local information; that is, if nk(G) ≥ θT .
First, the peers in known(G) are sorted by their trust
rating, according to the min-distrust-max-trust criterion.
The highest ranking θT peers are selected and the sig-
natures on their responses are verified. The trust and
distrust score of the version offered by G is determined
as the average of the trust and distrust ratings of the θT

selected peers.
If there is not sufficient information on G (i.e., nk(G) <

θT), then a set of θT − nk(G) random peers, denoted by
queried(G), are selected from unknown(G) and a trust
query bearing their IDs is issued.2 Upon the arrival of the
responses to this query, a queried trust rating is calculated
for each peer in queried(G). The trust and distrust score
of the file version offered by G is determined as the average
of the trust and distrust ratings of the peers in known(G)
and queried(G).

At the end of the evaluation, the file versions are sorted
by their trust scores, according to the min-distrust-max-
trust criterion, and the highest ranking one is selected for
download.

At this point, it would be wise to have another safety
check on the trust score of the file to be downloaded since
a file offered only by malicious peers may be the highest
ranking one, probably due to the lack of any alternative
versions. A possible threshold can be set here to allow the
download of only those files with a higher trust score than
distrust. Or, as a safer alternative, only the download
of those files with a zero distrust score may be allowed,
which would not be too restrictive provided that the query
neighborhoods are sufficiently large.

2.4 The Trust Query Process

As mentioned above, a trust query is issued when there
is not enough local information about the peers who offer
a file. The contents of a trust query message is similar
to that of an ordinary resource query message, and the
responses are authenticated in the same fashion.

The credibility of the responses is evaluated accord-
ing to the past records of the respondents. The results

2If nu(G) < θT − nk(G), then all peers in unknown(G) are
selected.

International Journal of Network Security, Vol.6, No.3, PP.235-245, May 2008 237

Trust vector: 11010000
of significant bits: 4

-

genuine download

from B Trust vector: 11101000
of significant bits: 5

Figure 1: Peer A’s update of its trust vector on B after an honest transaction. In this example ` = 8.

Trust vector:
11101000

of significant bits: 5
=⇒

Trust rating = (11101)2
25 = 0.90625

Distrust rating = (00010)2
25 = 0.0625

Figure 2: Computation of the trust and distrust ratings from the trust vector

of the past references of a peer are recorded in a binary
credibility vector. These vectors are managed in the same
manner as the trust vectors: A 1 represents a good refer-
ence in the past, a 0 represents a bad one. The vectors
are maintained as `-bit variables and are converted into
scalar credibility ratings in [0, 1) by division by 2m, where
m is the number of significant bits. A discredibility rat-
ing is computed accordingly from the complement of the
credibility vector.

The threshold θC specifies the number of responses to
be considered in a queried trust calculation. When the
responses to a trust query arrives, the querying peer sorts
the responses by the credibility rating of their senders.
Among them, the highest ranking θC responses are se-
lected.3 The signatures on the selected responses are ver-
ified.

The main piece of information contained in a trust
query response is the respondent’s trust and distrust rat-
ings for the queried peer. Once the responses for the cal-
culation are selected and authenticated, the queried trust
rating is calculated as the average of the trust ratings in
these messages, weighted by the net credibility ratings
of their senders, where the responses with a higher dis-
credibility than credibility are left out of the calculation.
That is, if peer A issued a trust query on peer B, and
the responses of peers R1, R2, . . . , Rk, k ≤ θC , qualify for
consideration, where the trust rating Ri provides on B is
ti and the credibility and discredibility ratings A has on
Ri are ci and di respectively, then A’s queried trust score
on B is ∑k

i=1(ci − di)ti
k

. (1)

The queried distrust rating is calculated in the same fash-
ion, using the distrust ratings provided by the respon-
dents.

One last thing to note here is about using the trust in-
formation coming from a peer with no credibility record.
If the top θC trust query responses selected for evalua-
tion contain responses with no credibility rating, which is

3If there are fewer than θC responses in total, all responses are
selected.

likely to be the case when the querying peer is new to the
system, using the credibility rating of zero as the weight
factor would result in the loss of all the information pro-
vided in those responses. Here, a constant ε factor smaller
than the smallest possible positive net credibility rating
can be used, such as

ε =
0.5

2` − 1
.

The operation of the trust query and evaluation pro-
tocol is illustrated in Figure 3.

2.5 File Download

Once the file version to be downloaded is decided, one
or more peers among those who has offered that version
are chosen as the source of the download. This selection
can be made randomly or according to a certain criterion
such as the quality of service; however it is important
that the selection is not done according to the highest
trust ranking, which would result in an overburdening of
the trusted peers.

It is possible that a peer who provided the right hash in
a query is in fact malicious and will send the malicious file
if selected for download. Correctness of the hash can be
checked once the file is downloaded completely, but then
the attacker will have succeeded in at least wasting the
bandwidth of the querier. Moreover, if multiple sources
are used for the download, which is a common way of
downloading large files, a hash mismatch detected after
the file download will not identify the malicious source,
possibly ruining the reputation of the honest peers along
with that of the malicious ones. To prevent this potential
threat, we describe a two-level hash scheme in Section 4.3
that detects falsely reported hashes early in the download.

2.6 Update of Trust and Credibility Rat-

ings

After the file download is complete, a user is asked to
judge the file as benign or malicious. If it is rated be-
nign, the trust rating of the peer(s) from whom the file

International Journal of Network Security, Vol.6, No.3, PP.235-245, May 2008 238

Figure 3: An illustration of the trust evaluation proto-
col. In response to a file query, three different replies
are received among which the querier is interested in the
first two. A trust comparison among these two versions
follows. In this process, sufficient information is not avail-
able locally on the providers of the second version. Hence,
a trust query is issued for peer x4. At the end of the cal-
culations, the first version turns out to be the one with
a better trust score and will be downloaded from some
subset of the peers {x1, x2, x3}.

is downloaded is upgraded. Otherwise, the rating of the
peer who sent the malicious content and the rating of
those who contributed to its selection are downgraded.
The difference between the two cases is due to the fol-
lowing fact: A malicious peer may well offer a right hash
during a query in the hope of being selected and, if se-
lected, sends the malicious content. Therefore, merely a
reference for a good file is not sufficient for upgrade of
the trust rating. On the other hand, if a downloaded file
turns out to be malicious, all peers who offered that file
can be assumed to be malicious.

The update of the credibility ratings is slightly more
complex: A peer’s credibility rating is updated at the end
of a file download if that peer has given an authenticated
opinion on a peer whose trust rating ended up being up-
dated as the result of that download.

A credibility rating update’s direction (i.e., its being
negative or positive) is determined according to the opin-
ion given and the direction of the trust rating that is up-
dated: If a peer’s trust rating is upgraded and some peer
gave a positive opinion on that peer, or if both the trust

rating update and the opinion were negative, then the
credibility of the referring peer is upgraded. Otherwise,
it is downgraded.

Another important point here is how an opinion is clas-
sified as positive or negative. Since the distrust rating has
priority in evaluation over the trust rating, an opinion
with a non-zero distrust rating is considered a negative
one. An opinion with a positive trust rating with zero
distrust on the other hand, which implies a trust rating
of 0.5 or higher, is considered a positive opinion.

3 Design Rationale

3.1 Basic Trust Evaluation Process

The idea of using the feedback from other peers to assess
the trustworthiness of a resource/peer is a fundamental
characteristic of reputation systems [13]. In our protocol,
this process is carried out in a distributed fashion due to
the lack of a centralized server in P2P systems in general.

In our trust rating calculations, opinions of peers are
weighted by their trustworthiness. Moreover, the evalu-
ation is restricted to a few (θT or θC) most trusted re-
sponses. This has the purpose of preventing some low-
trust responses discrediting a reliable resource/peer sup-
ported by sufficiently many trusted peers, as well as lim-
iting the number of responses to be authenticated, which,
unless restricted in number, can be a performance bottle-
neck.

A special feature of our trust evaluation function is the
separate treatment of the distrust ratings. Although both
the trust and distrust ratings are derived from the same
trust vectors, handling the distrust ratings separately has
the additional feature of not letting a dishonest dealing
be covered up easily by a few honest transactions, which
closely models real-life trust relations where a single dis-
honest transaction in someone’s history is a more signifi-
cant indicator than several honest transactions.

An important factor to be considered in reputation-
based systems is temporal adaptivity; that is the abil-
ity to respond rapidly to changing behavioral patterns.
Our trust rating design with binary vectors makes an effi-
cient exponential aging scheme with an aging factor of 0.5.
Besides, implementing the aging scheme by fixed-length
registers rather than floating point arithmetic has the de-
sirable feature of enabling peers to cleanse their history
by doing a certain amount of honest community service
after a bad deed. Note that this service must be done
to the same person who was cheated, and hence a bad
transaction on record will take some time to be erased
completely. The number of faithful transactions required
to cleanse a bad record is determined by the length of
the trust vector, `. If it takes a considerable amount of
time to have two transactions happen between the same
pair of users, ` = 8 could be a reasonable choice. Higher
values of ` could be preferred for highly active systems or
in systems where cheating is considered a major offense.

International Journal of Network Security, Vol.6, No.3, PP.235-245, May 2008 239

3.2 Queried Trust Evaluation

A fundamental decision in our design was to use a credi-
bility rating system separate from the trust ratings. The
main risk of using the trust ratings for credibility evalu-
ation comes from coordinated attacks where some mali-
cious peers do as much faithful public service as they can
and build a strong reputation, and then use their credi-
bility for supporting others who spread malicious content.
Having separate trust and credibility rating systems pre-
cludes such attacks.

One aspect different in the treatment of the credibil-
ity and the trust ratings is the way they are used when
ranking the file or trust query responses. The trust rat-
ings are ranked by the min-distrust-max-trust criterion
whereas the credibility ratings are ranked simply by the
rating values. This difference is due to the difference in
the significance of a negative entry on the vectors: A neg-
ative entry on Alice’s trust vector for Bob is due to a
problematic file served by Bob in the past. On the other
hand, a negative entry on Alice’s credibility vector for
Bob does not necessarily imply a wrongdoing on Bob’s
part but may simply be due to Alice and Bob’s having
different experiences with a third peer Charlie who may
be demonstrating inconsistent behavior, possibly with the
specific aim of creating discredibility among good peers.
It is due to this difference in reliability that the responses
to a trust query are ranked by the credibility ratings alone,
instead of using a min-discredibility-max-credibility rank-
ing.

Like the safety check discussed at the end of Section 2.3
against the low-trust responses that may enter into the
top θT in the local trust evaluation, we decided that the
top θC responses in a trust query should be evaluated only
if they have a credibility rating higher than discredibility.
Accordingly, the factor for weighting the trust query re-
sponses in Equation (1) is taken as the net credibility
ratings, ci − di, rather than the credibility ratings alone.

3.3 File Download and Update of the

Ratings

Once the file version to be downloaded is decided, the peer
to download it from is selected randomly among those
who offered that version without regard to the trust rat-
ings. This way of selection has the desirable feature of
enabling new peers to build a reputation as well as not
overloading the trusted peers.

We have already explained in Section 2 why the update
of trust ratings after a download is limited to the peers
from whom the file was downloaded and, in case the file
was malicious, to those who were authenticated references
for the file. The main reason was that we could not decide
conclusively about the other peers involved. It is due to
the same reason that the credibility ratings are updated
only for those peers who are authenticated references for
someone whose trust rating is updated as a result of the
download.

Note that, in a trust query, the top θC responses are
authenticated regardless of their net credibility rating’s
being positive or negative, despite the fact that the re-
sponses with a negative rating would not be used in the
calculations. This is necessary to give the peers with a
zero or negative net credibility rating a chance to upgrade
their ratings. Otherwise, if such an opportunity were not
present, it would not be possible for the new peers to build
a credibility, and the credibility system would be totally
useless. Similarly, it would not be possible for the good
peers who have somehow got a negative entry on their
credibility history to turn their ratings to positive again.

4 Security Extensions

In this section, we discuss the extensions done on the basic
protocol to provide secure and reliable trust information
in presence of active attackers.

4.1 Key Management

Our system makes use of digital signatures for authentica-
tion of critical messages. The core trust issue in public key
systems is to ascertain that a public key received on-line
belongs indeed to the claimed party. The classical solu-
tion to this problem is by trusted certification authorities,
which may not be an option in the P2P systems that are
totally decentralized. On the other hand, most P2P sys-
tems are pseudonym-based systems, where the question
is to bind the public keys to pseudonyms, not to real-life
identities. A well-known natural solution here is to make
the public key of a peer also its pseudonym. That is, in
an RSA-based system for example, the public exponent-
modulus pair (e, n) can be taken as the pseudonym of
the entity using it.4 In such a system, there will be no
question of the public key’s authenticity when the trust
information from a certain pseudonym is to be verified.

4.2 Denial of Service Protection

The requirement of responding to every relevant query
with a digital signature is likely to be an excessive burden
on the peers. Moreover, it can easily be exploited for
denial of service attacks by continually issuing many high-
match queries. To protect against this threat, a puzzle
scheme is used adding an extra round to the protocol:
In the initial response, the file hash is sent without any
signature. Instead, the responding peer includes a puzzle
to be solved by the querier, such as finding a string whose
MD5 hash matches a certain value [2], which should be
answered correctly before a signature is issued. Then the
querying peer decides on which file versions he is genuinely
interested in and solves the puzzles of a limited number
of the respondents for each version.

4If the pseudonyms are desired to be of uniform length such as
an ID number, a one-way hash of the public key can be used, as was
proposed by Damiani et al. [6].

International Journal of Network Security, Vol.6, No.3, PP.235-245, May 2008 240

4.3 Avoiding Fake File Downloads

Another avenue of attack for sending malicious files is to
provide the hash of a benign file during the query-response
process but, if selected as the download source, to send
the malicious file during the download. Such attacks can
be detected by checking the hash of a downloaded file
before opening. However, the time and bandwidth of the
downloader would be wasted, which is exactly the purpose
of certain attacks such as the “decoy files” [3].

A more effective protection is to compare the hash of
the blocks of the file while the download is in progress.
Merkle hash trees [12] provide a solution of this sort. An
alternative hash scheme is also possible that is more suit-
able for our protocol. In this alternative scheme, the hash
of a file is computed in two stages: First, the file is divided
into segments of a certain size and the hash of each seg-
ment is computed separately; then the hash of the file is
computed as the hash of these segment hashes. The only
computational overhead of this method is the extra hash
computation over the segment hashes, which would be
insignificant given that the segments sizes are reasonably
large. We believe that a segment size in the 100KB–1MB
range is a reasonable choice for most P2P networks.

Our trust evaluation protocol can be made to work
with this new hashing scheme by a simple modification:
Once the file version for download is selected, the querier
contacts one of the peers who provided the selected hash
and requests the detailed hash of the file. Upon receiving
the response and verifying its correctness, the peer pro-
ceeds to download the file, possibly from multiple sources.
During the download, the hash is checked after every
downloaded segment and the connection is cancelled if
a mismatch occurs.

Note that if an attacker sends the fake segment later
in the download to delay detection, the benign segments
downloaded until that point can be used without any
problem, saving the time and bandwidth spent.

4.4 The Problem of Free Riders

A problem with a quite different theme but which may
nevertheless benefit from our architecture is the problem
of “free riders”; that is, the peers who use the P2P system
only to download content but do not serve to other peers.
Many users of Kazaa-like file sharing systems use the sys-
tem as free riders. To tackle this problem and to discour-
age free riding, some systems determine the priority of
the service reception of a peer according to the amount of
service the peer has provided in the past. However, this
service information is typically provided by the software
of the client peer, which is easily hacked to always send
the highest possible value. Alternatively, centralized so-
lutions have been proposed where a server keeps track of
the amount of service provided and received by each peer
(e.g., [4, 9]); but this may not be a possible option for the
P2P systems that are totally decentralized.

Our trust record system provides a natural distributed

infrastructure that can also be used to assess the service
level of a peer: At the time of a download, the priority
of the download is determined according to the number
of 1s in the trust vector the server peer maintains for
the client peer. When the local information is insuffi-
cient, a trust query can be issued and a “service score”
can be calculated from some top few responses. Here,
unlike in the trust score calculation, the ranking of the
responses should not be based solely on the credibility
of the sources—the most credible respondents may pos-
sibly have not received any service from the client peer.
Instead, a combination of the credibility ratings and the
provided service scores should be used.

5 Simulation Experiments

We tested the performance of our protocol with simula-
tions on various attack scenarios with the following types
of attackers:

• naive, who respond to every query with a malicious
version of the requested file.

• hypocritical, who act like a reliable peer most of the
time but occasionally tries to send a malicious file.

• collaborative, who collaborate with each other in
trust queries, expressing a positive opinion for ma-
licious peers and a negative opinion for others.

• pseudospoofing, who change their pseudonym peri-
odically to escape recognition (i.e., the “Sybil at-
tack” [7])—these attackers are the hardest to detect
and their prevention is possible only after honest
peers build a sufficient level of trust among them-
selves.

• pseudospoofing with collaborators, where the pseu-
dospoofing peers are supported by a group of “col-
laborators” who normally act as trustworthy peers
and build trust in their communities, but give their
strongest support to their malicious peers when they
receive a relevant trust query.5

The simulated P2P networks operate with a Gnutella-
like decentralized routing structure. Every peer is linked
to a certain number of neighbors, and a query message is
propagated over these links for a certain number of hops
specified by the TTL. The simulations are run with the
following parameters:

5This attack scenario is more meaningful than collaborators
alone, since for malicious support in trust queries to be effective, the
peer to receive the support must have a clean history in its neighbor-
hood, hence must be changing its identity periodically. Otherwise,
that peer would have been identified as malicious and the support
to be given in trust queries would be irrelevant, as observed in Fig-
ure 5.

International Journal of Network Security, Vol.6, No.3, PP.235-245, May 2008 241

number of peers: 1000
number of distinct files: 1000

number of files each peer initially holds: 10
number of links per peer: 3

TTL: 3
ratio of malicious peers: 1–10%

length of trust vector: 8 bits

Here, the number of peers and files in the network are
determined according to the capacity of our system. The
number of connections per peer and the TTL are chosen to
make the area covered by a peer’s reachable neighborhood
a reasonable fraction of the whole network—about 2%
in this case. As for the malicious ratio in the network,
10% represents a high concentration of malicious peers,
whereas 1% is the scenario that is probably closer to a
real-life situation.

In a simulation run, regular users make file requests pe-
riodically, according to a uniform distribution. If the re-
quested file is available locally, no further action is taken.
Otherwise, a resource query message is issued, and the
protocol proceeds as described in Section 2. Malicious
peers may also issue file queries, basically for obtaining
genuine files to be used for confidence building. Mali-
cious peers are limited to their databases to send genuine
file responses, but they are free to respond to any query
maliciously.

It has been observed that the user behavior in P2P
file sharing systems shows a skewed, Zipf-like distribution
where users can be grouped into several categories accord-
ing to their interests, and within each category there are
a few highly popular files along with a large number of
less popular ones [10]. Our simulations can be expected
to give better results when run with such a skewed dis-
tribution since positive correlation among users’ behavior
would result in a more rapid trust establishment among
the users in the same category. We preferred to stick
to the uniform distribution which favors our protocol the
least, since the file requests in a uniform distribution can
come from anywhere in the domain and in our system it is
only the attackers who are able to respond to all queries
unrestrictedly.

5.1 Simulation Results

Results of our simulations are shown in Figures 4–8, where
the metric used to evaluate the performance is,

Φ1: Ratio of malicious downloads among all down-
loads

In the figures, every point shows the value of the statistics
measured since the last plotted point (i.e., not cumula-
tive), and the progress of the system is shown in terms of
the total number of file downloads.

Throughout the simulations, we take θT = θC , denoted
by θ. The inter-query time, or iqt, is the average time
between two consecutive file queries of a peer and is used
as the basic unit of the simulation time.

The main characteristics demonstrated by the experi-
ments can be summarized as follows:

• The protocol is quite effective in preventing the ma-
licious downloads and can reduce an attacks’ effec-
tiveness to zero within a short time depending on
the sophistication of the attackers.

• A large degree of protection can be obtained by just
evaluating one most trusted response, i.e., θ = 1. Set-
ting θ = 2 may help against sophisticated attackers.
The gain from θ > 2 appears to be negligible.

• The protocol is similarly effective for both 1% and
10% malicious peer density.

0

0.5

1

10000 20000

Φ
1

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

Figure 4: Simulation results for the naive attacker type.
The attackers are identified and inhibited rapidly. The
performance does not depend on θ.

0

0.5

1

10000 20000

Φ
1

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

Figure 5: Simulation results for the collaborative attacker
type. Their performance is only marginally better than
the naive attackers for reasons discussed earlier in this sec-
tion. (That is, for the support to be given in trust queries
to be effective, the peer to receive the support must have
a clean history.) A more effective attack scenario can be
seen in Figure 8 where collaboration is carried out in co-
ordination with pseudospoofing.

International Journal of Network Security, Vol.6, No.3, PP.235-245, May 2008 242

0

0.05

0.1

400000 800000

Φ
1

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(a) h = 0.10

0

0.05

0.1

400000 800000

Φ
1

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(b) h = 0.20

0

0.05

0.1

400000 800000

Φ
1

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(c) h = 0.25

0

0.05

0.1

400000 800000

Φ
1

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(d) h = 0.50

Figure 6: Simulation results for the hypocritical attackers
who try to send a malicious file after a certain number of
honest uploads. The parameter h specifies the dishonesty
rate of the attackers. (E.g., for h = 0.10, an attacker tries
to send a malicious file after every nine honest uploads.)
The results show that detection of the hypocritical attack-
ers takes longer than other attacker types, but their level
of effectiveness is also significantly lower. Among the h
values tested, the best attack performance is obtained for
h = 0.5

0

0.05

0.1

400000 800000

Φ
1

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(a) p = 50

0

0.05

0.1

400000 800000

Φ
1

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(b) p = 100

0

0.05

0.1

400000 800000

Φ
1

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(c) p = 250

0

0.05

0.1

400000 800000

Φ
1

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(d) p = 500

Figure 7: Simulation results for the pseudospoofing at-
tackers who adopt a new identity periodically. The pa-
rameter p specifies the period of the identity change.
(E.g., for p = 100, an attacker adopts a new identity
at every 100 iqt.) This attacker type is the hardest to
detect and prevent. Nevertheless, their ability to spread
malicious content converges to zero as good peers get to
know each other and build trust among themselves.

International Journal of Network Security, Vol.6, No.3, PP.235-245, May 2008 243

0

0.05

0.1

400000 800000

Φ
1

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(a) p = 50

0

0.05

0.1

400000 800000

Φ
1

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(b) p = 100

0

0.05

0.1

400000 800000

Φ
1

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(c) p = 250

0

0.05

0.1

400000 800000

Φ
1

of downloads

10% mal, θ = 1
θ = 2
θ = 5

1% mal, θ = 1
θ = 2
θ = 5

(d) p = 500

Figure 8: Simulation results for the pseudospoofing at-
tackers with collaborators. Here, 1–10% pseudospoofing
malicious peers try to spread malicious content where an-
other 10% of the peers are collaborators who normally act
as trustworthy peers and build confidence in their com-
munities, but give their full support to the pseudospoofing
malicious peers in trust queries—the 10% collaborator ra-
tio, which is probably too high to be realistic, is chosen
to guarantee the presence of at least one collaborator in
the neighborhood of every pseudospoofing attacker in or-
der to make the attacks more effective. This attack type
is somewhat more effective than pseudospoofing alone,
but their effectiveness also converge to zero as good peers
build trust with each other.

6 Related Earlier Work

A number of protocols have been proposed recently for
reputation-based trust management in P2P systems. In
this section, we discuss them briefly in comparison to our
protocol.

One of the earliest works in this area is a protocol
by Aberer and Despotovic [1], where dishonest peers are
identified by a complaint-based system. The protocol
maintains the negative feedbacks only and, hence, a trust-
worthy peer cannot be distinguished from a newcomer.
At the trust evaluation process, every peer is classified
as either trustworthy or untrustworthy. Operation of the
proposed protocol requires the maintenance of a P-Grid
structure on top of the existing P2P network.

Another protocol in the area is the EigenTrust scheme
proposed by Kamvar et al. [10], which evaluates the trust
information provided by peers according to their trust-
worthiness (i.e., using the trust ratings for credibility).
At the core of the protocol is a special normalization pro-
cess where the trust ratings held by a peer are normalized
to have their sum equal to 1. Although it has some inter-
esting mathematical properties, a drawback of this nor-
malization is that important trust information may get
lost during the process. (E.g., when there are n identical,
non-zero trust ratings in a peer’s database, their normal-
ized values will be 1/n, regardless of the original values
which could be very high or very low.)

A recent protocol that specifically addresses the issue
of assessing the trustability of alternative file versions ob-
tained in a P2P query is the P2PRep protocol of Damiani
et al. [5] (formerly, the XRep protocol [6]). This proto-
col is similar to our proposal in scope but differs in some
major aspects, including the way the trust scores are cal-
culated, the way the ratings are maintained and updated,
and the way the protocol messages are authenticated. A
detailed description of how P2PRep can be integrated into
the Gnutella protocol is given in [5]. An interesting idea
in [6] is to maintain reputation information for resources
as well as for peers, which we discuss how can be incor-
porated into our system in Section 7.

A study with a rather different but nevertheless rele-
vant scope is the PeerTrust system of Xiong and Liu [15,
16] on trust evaluation in P2P e-commerce communities.
The paper emphasizes two points for P2P reputation sys-
tems:

• In a rating scheme, the complaints, or any other opin-
ions for that matter, should be evaluated according
to the credibility of their providers.

• A peer’s behavior in different contexts should be eval-
uated according to the context. (E.g., feedbacks from
small and large transactions should be weighted dif-
ferently, according to the size of the transaction.)

The paper does not deal with the specifics of the proto-
col to be used in trust evaluation. Nevertheless, they do
simulations with an experimental rating scheme modified
from the protocol of Aberer and Despotovic [1].

International Journal of Network Security, Vol.6, No.3, PP.235-245, May 2008 244

Other recent works with a relevant scope include [17]
where a reputation management mechanism is proposed
for a community of software agents, [18] where a reputa-
tion mechanism is discussed for P2P applications where a
binary rating would not be sufficient (e.g., for P2P com-
merce), and [11] where a reputation management scheme
is discussed for partially-decentralized P2P systems—i.e.,
systems with a set of “supernodes” or “ultrapeers”.

7 Conclusions

In this paper, we presented a reputation system for estab-
lishing trust in P2P networks that helps preventing the
spread of malicious content. The system works by the
users’ evaluating the outcome of their past transactions
and sharing this information with their peers over the
P2P infrastructure when requested. Simulation results
show that the proposed system can be highly effective in
establishing trust among good peers and inhibiting the
malicious ones. The simulation results are further signif-
icant in that they show that evaluating the one or two
most trusted responses in a query is sufficient to have
most of the potential benefit, and, hence, the proposed
system can be used with a relatively small overhead.

Several improvements are possible on the basic proto-
col to make it more efficient. For example, a timer mech-
anism can be used to detect and remove the trust vec-
tors belonging to peers that are no longer active. Trust
queries can be made more efficient by combining all IDs
to be queried into a single query message, reducing the
number of query and response messages to be handled.
Although the protocol maintains `-bit trust and credibil-
ity vectors, it might be more suitable to use only part
of that information for different purposes. For example,
when evaluating trust responses that come from peers, it
may be more desirable to take only the most recent few
transactions into account.

A potential improvement on the basic protocol may
be realized by preserving the hashes of the malicious files
downloaded. These hashes can later be used to send a
warning to the querying peer when a relevant query is re-
ceived. This idea was originally proposed by Damiani et
al. [6] in a similar context. Our protocol can be enhanced
to include this feature with the following modifications:
The warning messages received in a query are grouped
along with the normal responses according to their file
hash value. If selected into the top θT for trust evalua-
tion, a warning message’s trust and distrust ratings are
reversed in the trust score calculation, contributing a sig-
nificant distrust factor to the average.

The limitations of our protocol must also be noted.
Being a reputation-based protocol, our system in the end
relies on the judgment of its users and, hence, is effec-
tive only against attacks that are perceivable by the user.
Nevertheless, many attacks in P2P systems fall into this
category, not the least the common decoy files attacks [3].

Another point to note is that our protocol does not dis-

tinguish between malicious peers and careless peers who
spread malicious content, which we believe is the right
way to deal with careless peers from a practical point of
view. A careless peer always has the ability to improve
its reputation by serving a sufficient number of good files
once it corrects its attitude.

Our protocol is designed to be compatible with most
first generation P2P systems. However, certain optimiza-
tions would be needed to obtain the best performance
when integrating it with a specific system. For exam-
ple, in a Gnutella-like network where a peer’s connections
change constantly, building a reliable reputation base can
take too long and a malicious peer can escape recognition
for a long time due to the constantly changing neighbor-
hoods. In such a system, a connection scheme where some
of the neighbors of a peer change continually for content
distribution and others, which are possibly determined by
a longest prefix match on the ID, remain relatively stable
for trust management, could be more effective for faster
trust establishment. More detailed simulations with this
kind of specifics can be carried out to get a more detailed
view of the protocol’s performance in particular environ-
ments.

References

[1] K. Aberer and Z. Despotovic, “Managing trust in
a peer-2-peer information system,” in Ninth Inter-
national Conference on Information and Knowledge
Management (CIKM’01), 2001.

[2] T. Aura, P. Nikander, and J. Leiwo, “DOS-resistant
authentication with client puzzles,” in 8th Inter-
national Workshop on Security Protocols, Springer-
Verlag, 2000.

[3] BBC-Online, Record Industry Spoofs Net Pi-
rates. (http://news.bbc.co.uk/2/hi/entertainment/-
2093931.stm)

[4] B. Cohen, “Incentives build robustness in BitTor-
rent,” in Workshop on Economics of Peer-to-Peer
Systems, 2003.

[5] E. Damiani, S. D. C. D. Vimercati, S. Paraboschi,
and P. Samarati, “Managing and sharing servants’
reputations in P2P systems,” IEEE Transactions on
Knowledge and Data Engineering, vol. 15, no. 4, pp.
840-854, July-Aug. 2003.

[6] E. Damiani, S. D. C. D. Vimercati, S. Paraboschi,
P. Samarati, and F. Violante, “A Reputation-based
approach for choosing reliable resources in peer-to-
peer networks,” in Proceedings of the 9th ACM Con-
ference on Computer and Communications Security,
pp. 207-216, 2002.

[7] J. R. Douceur, “The Sybil attack,” in 1st In-
ternational Workshop on Peer-to-Peer Systems
(IPTPS’02), pp. 251-260, Springer-Verlag, 2002.

[8] EBay. (http://www.ebay.com)
[9] M. Gupta, P. Judge, and M. Ammar, “A reputa-

tion system for peer-to-peer networks,” in Proceed-
ings of the 13th International Workshop on Network

International Journal of Network Security, Vol.6, No.3, PP.235-245, May 2008 245

and Operating Systems Support for Digital Audio and
Video (NOSSDAV’03), pp. 144-152, 2003.

[10] S. D. Kamvar, M. T. Schlosser, and H. G.-Molina,
“The eigentrust algorithm for reputation manage-
ment in P2P networks,” in Proceedings of the
12th International Conference on World Wide Web
(WWW2003), pp. 640-651, 2003.

[11] L. Mekouar, Y. Iraqi, and R. Boutaba, “A reputation
management and selection advisor schemes for peer-
to-peer systems,” in 15th IFIP/IEEE International
Workshop on Distributed Systems: Operations and
Management (DSOM’04), Springer-Verlag, pp. 208-
219, 2004.

[12] R. Merkle, “Protocols for public key cryptosystems,”
in Proceedings of the 1980 IEEE Symposium on Se-
curity and Privacy, 1980.

[13] P. Resnick, R. Zeckhauser, E. Friedman, and K.
Kuwabara, “Reputation systems,” Communications
of the ACM, vol. 43, no. 12, pp. 45-48, 2000.

[14] Symantec. (http://securityresponse.symantec.com/-
avcenter/venc/data/vbs.gnutella.html)

[15] L. Xiong and L. Liu, “A reputation-based trust
model for peer-to-peer ecommerce communities,” in
IEEE Conference on E-Commerce (CEC’03), 2003.

[16] L. Xiong and L. Liu, “PeerTrust: Supporting
reputation-based trust in peer-to-peer communities,”
IEEE Transactions on Knowledge and Data Engi-
neering, vol. 16, no. 7, pp. 843-857, July 2004.

[17] B. Yu and M. P. Singh, “A social mechanism of rep-
utation management in electronic communities,” in
Proceedings of the 4th International Workshop on
Cooperative Information Agents IV, The Future of
Information Agents in Cyberspace, pp. 154-165, 2000.

[18] B. Yu, M. P. Singh, and K. Sycara, “Developing trust
in large-scale peer-to-peer systems,” in First IEEE
Symposium on Multi-Agent Security and Survivabil-
ity, pp. 1-10, 2004.

Ali Aydin Selcuk received his BS de-
gree from Middle East Technical Uni-
versity in 1993, MS from Bilkent Uni-
versity in 1995, and PhD from Univer-
sity of Maryland, Baltimore County, in
2001. Currently he is an assistant pro-
fessor at Bilkent Univeristy. His pre-
vious work experience includes RSA

Data Security, Novell, and the Network Systems Lab of
Purdue University. His research interests are in cryp-
tography and network security, with an emphasis on se-
cure communication protocols, secure multiparty compu-
tation, and cryptanalysis of block ciphers.

Ersin Uzun is a PhD student in
the Networked Systems Department at
University of California, Irvine. He
had his BS degree in computer engi-
neering at Bilkent University and his
MS degree in networked systems at
University of California, Irvine. His
research interests include networking

and systems security, usable security and applied cryp-
tography.

Mark Pariente is currently working
as a software engineer in VMware Inc.
He got his BS degree in Computer En-
gineering from Bilkent University in
Ankara, Turkey and his MS degree
from the Information Networking In-
stitute at Carnegie Mellon University.
His research interests include operat-

ing systems, networking and network security.

