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Abstract. In this paper we analyze the key scheduling algorithm of
RC4, and investigate the relations between bytes of the encryption key
and the entries of the state table. We give a method to derive the state
table partially from a partially known encryption key. We also analyze
a class of related keys which yield similar state tables and produce key
streams that are similar at the initial bytes.

1 Introduction

RC4 is probably the simplest and the most widely-used software stream cipher
in the world today. It has only a few lines of code, but it is also quite secure—to
a large extent, despite some weaknesses in its key schedule—due to the highly
non-linear structure of the swap function in the algorithm.

In this paper we focus on the key scheduling algorithm of RC4 and discuss
certain avenues of attack related to its key schedule.

The rest of this paper is organized as follows: In Section 2 we briefly re-
view the RC4 algorithm. In Section 3 we summarize the existing work on RC4.
In Section 4, we explore several features of the key schedule and discuss the
possibilities of translating these features into attacks on RC4.

2 RC4 Stream Cipher

The operation of RC4 is defined on n-bit words where n is a variable integer
parameter. The state of the cipher is defined by a 2n-word table S that consists
of a permutation of integers from 0 to 2n − 1. The state table S is initialized
by the key scheduling algorithm (KSA) which shuffles S using the encryption
key K. The key is l-word long, which is also a variable parameter. Once the key
schedule is complete, the pseudo-random generation algorithm (PRGA) is run
which produces a pseudo-random running key stream from the S table while
simultaneously shuffling the table. The KSA and PRGA algorithms are given
below. All additions in the algorithms are modulo 2n.

The most common version of RC4 uses n = 8 with l = 16, and the table S
consists of 256 elements. In this paper we will also assume these values unless
otherwise is stated.



Algorithm 1 Key Scheduling Algorithm (KSA)

for i = 0 to 2n − 1 do

S[i]← i

end for

i← 0
j ← 0
for i = 0 to 2n − 1 do

j ← j + S[i] + K[i mod l]
swap(S[i], S[j])

end for

Algorithm 2 Pseudo-Random Generation Algorithm (PRGA)

i← 0
j ← 0
loop

i← i + 1
j ← j + S[i]
swap(S[i], S[j])
t← S[i] + S[j]
output S[t]

end loop

3 Previous Work on RC4

Different kinds of attacks have been applied to RC4, including attacks both on
the key schedule and on the pseudo-random generation parts of the cipher.

Distinguishing attacks try to observe a fingerprint of RC4 output by distin-
guishing RC4 from a random source. Golic first showed a weak distinguishing
linear property on long RC4 key streams [4].

Later stronger statistical properties were observed by Fluhrer and McGrew [3].
They observed biases in the digraph distribution with respect to the increment
index i. This not only leads to a distinguisher of the cipher output, but also for
some “fortuitous states”, it reveals information about the secret table.

Mister and Tavares [12] analyzed the cycle structure of RC4 and suggested
a tracking algorithm to fill the S table given a portion of the running key.

Finney [1] observed a small cycle in the running key generation mechanism.
If RC4 was not designed carefully, one of every 216 keys would fall into a cycle
of length 255 · 256.

Mironov [11] analyzed the shuffling structure and observed that it has a non-
uniform distribution. His conclusion was that the first 512 bytes of the running
key should be avoided to come to a uniform stage.

Puduvkino [13] worked the number of initial states of RC4 cipher with the
same cycle structure and has shown that this number is more than expected.

The best results are due to Mantin. He observed some biases in the first
and second bytes of the running key [10]. He also observed several weaknesses
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regarding certain uses of an IV in RC4. With these observations, practical attacks
were designed and applied on the WEP protocol [2]. His thesis [8] is a collection
of his work up to its date of writing.

Roos [15] and Wagner [17] observed some weak key classes for which the
first entries of the table depend only on a few bytes of the key. Therefore, for
these classes of keys, the key can be derived faster than exhaustive search. Roos
observed that with a significant probability the first n entries of the table are
determined by the first n elements of the key, which we will use in our research.

Grosul and Wallach [5] observed that, if the key size is as large as the table,
a pair of keys which are identical until the last two bytes produce running key
streams that are very similar in the first 256 bytes.

Knudsen et al. [7] developed a backtracking algorithm which fills the initial
S table given a small part the running key stream. The complexity of this attack
seems to be less than the square root of all the possible states.

Recently Mantin [9] presented a new distinguishing attack using the bias in
the digraph distribution of the cipher. By this bias, one can predict the next bit
or byte of the running key if 245 or 250 output words are known respectively.

4 Analysis of the RC4 Key Schedule

In this study we mainly focus on two questions:

1. Is there a way to guess a non-trivial portion of the table after key schedule?
2. Given two initial tables of RC4 which are identical on a certain number of

entries, can we observe a significant correlation between the running key
sequences they produce?

If we can answer both of the questions positively, this means that a divide and
conquer attack may be possible by observing the output key stream. If only
the answer to the first question is positive, this points to a weakness in the key
schedule of RC4. In the following section, we answer the first question positively.
We also observe that similar S tables may lead to a bias in the running key.

In what follows, we analyze the similarity of (i) the j sequences, (ii) the S
tables, and (iii) the running key sequences, given a certain similarity relation in
the encryption key.

4.1 Generating Similar Tables

In this section, we investigate the question that whether some useful informa-
tion can be derived on the initial S table from some partial knowledge on the
encryption key K. In particular, assume that we know the first m bytes of the
key for some m < l. ¿From Roos [15] we know that the first m elements of the
table can be determined with a non-trivial probability:

Theorem 1 (Roos [15]). For m < l, the probability that the m’th entry of the

initial S table is determined by the first m words of the key K[0 . . .m − 1] is
greater than or equal to 36.8%.
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Proof. During the key schedule, there are two ways that an entry of the S table
can be swapped: It must be indexed by either i or j. After the mth entry is
swapped by i = m− 1, there is a probability of (255/256)l−m ≥ (255/256)255 =
0.3686 that j will not address S[m − 1] again. Also note that the first m swaps
are completely determined by K[0 . . .m − 1]. ut

This theorem gives some probabilistic information on the table entries in
terms of the key bytes. But when only a small portion of the key is known,
information provided will be limited to the first few entries of the table. After
that point, knowledge of the j sequence will be disrupted and we cannot continue
to trace the swaps further.

Nevertheless, note that in the key schedule the bytes of the encryption key
are reused periodically. Hence if we can guess the j value after the lth iteration,
we will be able to conduct another m swaps using the first m bytes of K. By
this way we may obtain an S table that is close to the actual case. The following
algorithm describes this procedure:

1. For the first m steps, swap the S table according to the known key bytes.
2. Skip the next l − m iterations without any swaps.
3. Guess a value for j at this point. Continue m iterations with the known key

bytes. Skip another l − m iterations without any swaps.
4. Repeat Step 3 for a specified number of times, say nj , or until the key

schedule is complete.

The procedure above can be translated into a divide-and-conquer attack on
K where the first several bytes of the key can be recovered independent from
the rest: For some specified values of m and nj , search m bytes of K and nj

values of j exhaustively and compute the S table as described above. When the
right value of K[0 . . .m−1] is encountered, a significantly higher similarity with
the actual S table will be observed. Hence, the right key can be distinguished
accordingly.

Of course, to complete this attack one would also need to translate the simi-
larity between two S tables into some observable correlation between their output
key streams.

We carried out various tests to measure the average similarity between two
S tables produced as described above with 8 ≤ m ≤ 15 and 0 ≤ nj ≤ 15 for
l = 16. Here it may at first appear unnecessary or even useless to test the values
where m+nj ≥ l since this would mean a search more costly than an exhaustive
search on K. In fact it does not have to be so: Each correctly guessed value
of j carries some implicit information on the sum of the key bytes and enables
possibly more informed guesses on the succeeding j values. Hence we chose to
include the cases with m + nj ≥ l in the tests as well.

In the tests conducted, the similarity probabilities for each value of m and
nj are calculated over 214 random keys. The average probability of a match is
calculated for each entry of the S tables. Figures 1–3 summarize the results of
these experiments for some selected values of m and nj .

4



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  50  100  150  200  250  300

P
r(

 S
[i

] 
=

 S
’[

i]
 )

i

nj = 0
nj = 4

nj = 12
nj = 15

(a) The overall S table

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  10  20  30  40  50  60

P
r(

 S
[i

] 
=

 S
’[

i]
 )

i

nj = 0
nj = 4

nj = 12
nj = 15

(b) Focus on 0 ≤ i ≤ 64

Fig. 1. Probability of obtaining the right value at S[i] with m = 8 known key bytes.
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Fig. 2. Probability of obtaining the right value at S[i] with m = 12 known key bytes.
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Fig. 3. Probability of obtaining the right value at S[i] with m = 15 known key bytes.
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Discussion of the Algorithm The table construction algorithm above utilizes
several key ideas:

– The best way to approximate the swap function is by the swap function
itself.

– Repeated use of the same key bytes in the KSA can be exploited coupled
with a periodic guess of the j value.

– When the involved key byte is unknown, making no swap gives a better
approximation than making a wrong swap.

The results of the experiments indicate that some partial information can be
obtained on the state table from a partial knowledge of the key. For instance,
for m = 12 and nj = 4 in Figure 2, m × (nj + 1) = 60 entries of the table can
be guessed with probabilities between 0.36 and 0.20, and hence we can expect
to guess on average 13–15 entries of the table correctly. This observation can be
used as a beginning state of the algorithm in [7] which fills the table using the
running key stream from a partially known state table.

An important consequence of these results is that the KSA of RC4 is not a
random permutation. In particular, the ith table entry S[i] depends on K[0 . . . i′],
for i′ = i mod 16, more heavily than on K[i′ + 1 . . . 15].

As a final point, we can note that two tables with r identical entries can be
expected to produce an identical output at a particular ith iteration of the PRGA
with a probability about (r/256)3—i.e., the probability of having identical S[i],
S[j], S[t]. Furthermore, if i is known to be in the range where the two tables are
mostly identical, this probability can be expected to be as high as (r/256)2.

4.2 The Related Key Similarity

Grosul and Wallach [5] observed that, if the encryption key is as large as the
S table, then two related keys that differ only in the last few bytes produce
key streams that are very similar at the beginning. They left the construction of
related keys in practical versions of RC4 where the key length l is typically much
less than the table size 2n as an open problem. In this section we investigate the
related key scenarios in the commercial RC4 model where l = 16 and n = 8, and
analyze the similarity of the j sequences, the initial S tables, and the running
key streams. We show that related keys still exist, but in a probabilistic manner.

Lemma 1. Let (K0, . . . , K14, K15) and (K0, . . . , K14−δ, K15+δ) be two 16-byte
RC4 keys for some 1 ≤ δ ≤ 255. Consider the j sequences of length 256 produced

by the two keys during the key schedule. Then,

i. The first 14 elements of the j sequences are the same.

ii. The 15th elements are always different.
iii. The 16th elements have a probability of 254/256 of being equal.

iv. As for the next 16 elements; the probability of having the same two values is

also very high for the 17th element; it slightly lessens from the 18th to the
30th; it is small for the 31st; and it again increases for the 32nd.
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v. The succeeding elements follow the same pattern in 16-byte periods, but with

a decreasing probability.

Proof. Since the first bytes are equal, this will produce the same result for the
first 14 j values. Since δ 6= 0, the 15th elements of the j sequences are different.
But this change gets cancelled with +δ in the 16th element, if it is not swapped
to a different position in the 15th step (which may happen with probability
2/256.) The next 16 elements follow the pattern in item (iv) given that the
two j sequences re-synchronized at the 16th iteration. Then the rest follows by
induction. ut

The similarity of the j sequences in the key schedule results in a similarity
between the corresponding S tables. This in turn may result in a similarity
between the running key sequences produced.

Of course, other key relations which produce a similar effect exist and can
be found easily, such as a difference of (−δ,−δ, 2δ) on the last three key bytes.
The (−δ, δ) difference we investigated is the one that gives the most significant
similarities among its kind.

We tested the similarity effects in a series of experiments where two 16-
byte RC4 keys are taken which differ only on the last two bytes by a specified
(−δ, δ) value. The experiments are repeated for 224 random runs for each value
of 1 ≤ δ ≤ 255. The results are presented in Figure 4–6 for δ = 1, 16, 128.

The results of the experiments indicate that, as in [5], the maximum simi-
larity between the S tables is obtained for δ = 1 and 255, and the similarity
decreases while δ approaches 127 and 128. The related keys also produce related
key streams, but this correlation is mostly limited to the first few bytes of the
running key. We must mention that these values are on average. For the max-
imum values, we observed instances where more than the first 20 bytes of the
two running key streams agreed.
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5 Conclusion

In this paper, we studied the key scheduling algorithm of RC4 in several aspects.
We proposed an algorithm to generate similar S tables in RC4 with a partial
knowledge of the encryption key. These similar tables also produce similar run-
ning key sequences in the first few iterations of the PRGA algorithm. We also
studied the related key properties of the algorithm, and showed that the related
keys Grosul and Wallach [5] observed on a simplified version of the algorithm
exist in practical versions of RC4 as well.
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