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Abstract. Despite their widespread usage in block cipher analysis, the
success probability estimation of differential and linear cryptanalytic at-
tacks has traditionally been carried out in a rather ad hoc fashion. In this
paper, we present an analytical calculation of the success probability of
these attacks. Besides providing a sound formulation of the success prob-
abilities, the analysis reveals some previously unnoticed factors affecting
the success of an attack, such as the attacked key length in differential
cryptanalysis. The results apply to an extended sense of the term “suc-
cess” where the correct key is found not necessarily as the highest-ranking
candidate but within a set of highest-ranking candidates.

1 Introduction

Differential and linear cryptanalysis are two of the most important techniques
in block cipher cryptanalysis today. Virtually every modern block cipher has its
security checked against these attacks and a number of them have actually been
broken. Despite this widespread utilization, evaluation of the success probability
of these attacks is usually done in a rather ad hoc fashion: Success chances of
differential attacks are typically evaluated based on the empirical observations
of Biham and Shamir [1] using the “signal-to-noise ratio”. In the case of linear
cryptanalysis, arbitrary ciphers are being analyzed by using the probability re-
sults of Matsui’s DES attacks [5, 6], which were in fact calculated specifically
for those attacks.

In this paper, we present a general analysis of the success probability in linear
and differential cryptanalysis. We work with an extended definition of “success”:
If an attack on an m-bit key gets the correct value as the rth candidate among
the 2™ possibilities, we say the attack obtained an (m — lgr)-bit advantage over
exhaustive search. The traditional, more strict definition of success, where the



attack discovers the right key as the first candidate, corresponds to obtaining an
m-bit advantage over an m-bit key.

We present analytical calculations for the probability of success in linear and
differential cryptanalysis for achieving a desired advantage level. The results
also provide formulae for directly calculating the required amount of plaintext-
ciphertext data for obtaining a given advantage with a given probability. In the
case of differential cryptanalysis, the results show the aimed advantage level—
that is, in more traditional terms, the number of key bits attacked—as a factor
affecting the probability of success, in addition to the already established factors
of the signal-to-noise ratio and the expected number of right pairs.

Most notations are defined in the sections they are used. Notations common
to all sections include ¢ and & for the probability density and the cumulative
distribution functions of the standard normal distribution; B and N are used for
denoting the binomial and normal distributions.

2 Success Probability in Linear Cryptanalysis

In a linear attack, the first step is to find a linear approximation for the ci-
pher. A linear approximation is a binary equation of the bits of the plaintext,
ciphertext, and the key, which holds with a probability p # 1/2. The quan-
tity |p — 1/2|, known as the bias, is a measure of correlation among the plain-
text, ciphertext, and key bits, and it can be used to distinguish the actual key
from random key values. In an attack, the attacker collects a large number of
plaintext-ciphertext blocks, and for each possible key value he counts the num-
ber of plaintext-ciphertext blocks that satisfy the approximation. Assuming that
the bias of the approximation with the right key will be significantly higher than
the bias with a random key, the key value that maximizes the bias over the given
plaintext sample is taken as the right key.

In general, it may be sufficient to have the right key ranked reasonably high
among the candidates rather than having it as the absolute highest. For example,
in Matsui’s attack on DES, a 26-bit portion of the key was attacked where the
right key was ranked among the top 2'3. In this kind of ranking attacks, all
candidates ranked higher than the right key must be tried before the right key
can be reached. Each candidate must be checked with all combinations of the
remaining, unattacked bits to see if it is the right value. In such an attack,
where an m-bit key is attacked and the right key is ranked rth among all 2™
candidates, the attack provides a complexity reduction by a factor of 2™~ 187
over the exhaustive search. In our analysis, we refer to m —1gr as the advantage
provided by the attack.

2.1 Problem Statement

Consider the problem where an attacker is interested in getting the right key
ranked within the r top candidates among a total of 2™ keys, where an m-
bit key is attacked, with an approximation of probability p, using N plaintext



blocks. Let k¢ denote the right key and k;,1 < i < 2™ — 1, be the wrong key
values, and let n denote 2™ — 1. Let X; = T;/N —1/2 and Y; = | X;|, where T;
is the counter for the plaintexts satisfying the approximation with key k;. Let
W;, 1 <i < 2™ —1, be the Y;,i # 0, sorted in increasing order. That is, W; is
the lowest sample bias |T;/N — 1/2| obtained among the wrong keys, W, is the
highest. Then, the two conditions for the success of the attack are

Xo/(p—1/2) >0, (1)
that is, To/N — 1/2 and p — 1/2 have the same sign, and
|Xo| > W71 (2)

In the rest of this analysis, we assume for simplicity that p > 1/2.! Hence, the
two conditions become

XO > 03 (3)
X() > Wn—r—i—l- (4)

This modeling of the success probability was originally given by Junod [3],
where he derived an expression of the success probability in terms of Euler’s
incomplete beta integral assuming that the T;s are independent and they are
identically distributed for ¢ # 0. He also presented a numerical calculation of that
expression for Matsui’s 26-bit DES attack [6] assuming that the approximation
has a zero bias for a wrong key, i.e., E[T;/N —1/2] = 0 for i # 0.

Here, we present a more general calculation of the success probability using
the normal approximation for order statistics. Like Junod, we also assume the
independence of the T; counters and a zero bias for the wrong keys. Since the
zero bias for the wrong keys is the ideal case for an attacker, the results can be
seen as an upper bound for the actual success probability.

2.2 Order Statistics

In this section we give a brief review of order statistics, as treated in [7]. The-
orem 1, the key for our analysis, states the normal approximation for the order
statistics.

Definition 1. Let &,&o,...,&, be independent, identically distributed random
variables. Arrange the values of &1,&s,...,&, in increasing order, resulting in
&, 65, .., 6. &F is called the i-th order statistic of the sample (&1,&2,...,&).

Definition 2. For 0 < ¢ < 1, the sample quantile of order q is the |gn]| + 1-th
order statistic .f’[‘qn I

! The corresponding results for the case p < 1/2 can easily be obtained by substituting
—Xo for Xo.



Theorem 1. Let &,&,...,&, be independent, identically distributed random
variables, with an absolutely continuous distribution function F(z). Suppose that
the density function f(x) = F'(z) is continuous and positive on the interval
[a,b). If 0 < F(a) < ¢ < F(b) <1, and if i(n) is a sequence of integers such that

lim +/n @—q‘:(),

n—oQ

further if £ denotes i-th order statistic of the sample &1,&a, ..., &, then f;‘(n) 18
in the limit normally distributed, i.e.,

lim P (M < :1:) = &(z),

n—o0 O'q
where
_ o1
pe = F~(q),
_ 1 Jq(1-g)
0q = .
f(ﬂq) n

Taking i(n) = |gn] + 1, the theorem states that the empirical sample quan-
tile of order g of a sample of n elements is for sufficiently large n nearly nor-
mally distributed with expectation p, = F~!(g) and standard deviation o, =

1 9(1—9q)
f(l‘q) n :

2.3 Success Probability

The sample bias of the right key, Xo = To/N — 1/2, approximately follows a
normal distribution NV (g, 03) with pg = p—1/2 and 62 = 1/(4N). The absolute
sample bias of wrong keys, Y;,i # 0, follow a folded normal distribution (see
Appendix A) FN (uw,0%,) with pw = 0, assuming a zero bias for wrong keys,
and o3, = 1/(4N). We use fo, Fy and fw, F to denote the probability density
and the cumulative distribution functions of Xy and Y, # 0, respectively.

In an a-bit advantage attack on an m-bit key, success is defined as

Xo>0 (5)
Xo > Ws (6)
where W1, Wa, ..., Wam_; are the absolute sample bias of the wrong keys sorted

in increasing order, and 7 denotes 2™ — 2™ *. According to Theorem 1, W
approximately follows a normal distribution A (pg,0?), which we denote by Fy,
where

pe=F, (1-2"% = pw+owd '(1-2"""1)

1 m+ta ow m4a
o'q = —2 2 = 2_ 2 ,

fuw(trg) 2¢(-1 (1 —27271))




since Fyy is folded normal. Then the probability of success, Ps, is

R5=Am/;n@m%mmw. (7)

For a,m > 8, we have u, > 50, and, therefore, the probability of Wz < 0 is
negligible. Hence, (5) and (6) can be combined as

Xo > Ws. (8)

Since both Xy and W5 follow a normal distribution, X, — W5 follows a normal
distribution too, which we denote by F;, with mean pio— g, and variance o§ +o73.
Therefore,

Ps = P(Xo — Wy > 0)

= /000 fi(z)dz
= [, s ©
Ve

Table 1 gives a numeric calculation of (9) for certain values of a and m, with
N = 8|p — 1/2|72 plaintext blocks.

La]lm = 8]m = 16]m = 32[m = 48]

8110.996 | 0.997 | 0.997 | 0.997
16| — | 0.903 | 0.909 | 0.909
32| — — 0.250 | 0.248
48|| — — — 0.014

Table 1. The success probability Ps according to equation (9) for obtaining an a-bit
advantage on an m-bit key, for N = 8|p — 1/2|~? plaintexts. It is interesting to note
that Ps does not change much depending on m for a given a.

o is typically much smaller than o3. For 8 < a < 48, we have 107¢ <

o4/00 < 107!, Especially when dealing with success probabilities of 80% or

more, the effect of o, is negligible. Assuming /0 + 02 ~ 09, (9) becomes

Ps = / _ ¢(z)dz (10)
_ 000 q
-/ b(z) do, (11)
—2VN(lp—1/2|-F3* (1-2-))

independent of m, the number of key bits attacked. For F,, being the folded
normal distribution FAN(0,0%,), we have F;'(1 —27%) = o 1(1 — 27271



and, for ow = 1/(2V/N),

Ps = / - 6(z) do (12)

—2v/N|p—1/2|4+&-1(1—2—a-1)

A numerical calculation of the success probability as expressed in (12) is given
in Table 2.

Note that (10) is in fact the probability of Xo > E[W5], neglecting the
variation in Wir. A comparison of Table 1 and the column for ¢y = 8 in Table 2
reveals that 0,4, the variance of W5, is quite insignificant and neglecting it is
reasonable.

la]len =2[cn = 4fen =8Jen = 16]cn = 32[en = 64
81[0.477 ] 0.867 [ 0.997 | 1.000 | 1.000 | 1.000
16]| 0.067 | 0.373 | 0.909 | 1.000 | 1.000 | 1.000
32[| 0.000 | 0.010 | 0.248 | 0.952 | 1.000 | 1.000
48][ 0.000 | 0.000 | 0.014 | 0.552 | 0.999 | 1.000

Table 2. Probability of achieving an a-bit advantage for various values of the plaintext
amount N = cy|p — 1/2|™?, according to equation (12).

The following theorem summarizes the main result of this section:

Theorem 2. Let Pg be the probability that a linear attack, as defined by Algorithm-
2 in [5], where all candidates are tried for an m-bit subkey, in an approximation
of probability p, with N known plaintext blocks, delivers an a-bit or higher ad-
vantage. Assuming that the approzimation’s probability is independent for each
key tried and is equal to 1/2 for all wrong keys, we have, for sufficiently large m
and N,
o0
ps = [ $(o) da, (13)

—2v/N|p—1/2|+$-1(1—2-a-1)

independent of m.

Equation (13) implies 2v/N|p — 1/2| — &~ 1(1 — 27" 1) = &~1(Ps), yield-
ing Corollary 1. This corollary gives a direct formula for the plaintext amount
required for a desired success probability. The needed ¢! values can easily
be calculated numerically, or they can be obtained from the standard normal
distribution tables.

Corollary 1. With the same assumptions of Theorem 2, the number of plaintext
blocks required to have a certain success probability Ps in an a-bit advantage
linear attack is equal to cn|p — 1/2|72, where

CN = (¢_1(PS) +o 11— 2—a—1)>2 |

5 (14)



2.4 Accuracy of the Approximations

In a typical linear attack, N is at least in the order of 230240 and p is very close
to 1/2. Hence, the normal distribution can be expected to give an extremely
good approximation for the binomial T; counters and for X; = (T;/N —1/2). As
for the normal approximation of the order statistics, it is usually accepted to be
a good approximation when n is in the order of hundreds or larger [2]. In our
case, n = 2™ — 1, hence, we conjecture that the normal distribution will be a
good approximation, in particular when m > 16, as in most linear attacks.

Although it is difficult in general to verify the goodness of the normal ap-
proximation for the order statistics, it can be done quite efficiently for the special
case a = m (i.e., when the right key is to be ranked the highest). In this case,
a straightforward analysis, again assuming the independence of the T; counters,
gives,

o= [T ([ wa)  rwe

00 z+2vVN|p—1/2] 2m-1
-/ ( / ¢(y)dy> o(@)de.  (15)
—2vN|p—1/2| —z—2VN|p—1/2|

We calculated (15) for m < 32. The results match the results in Table 2 with an
error rate of 5% or less. The relatively high error rates occur for 0.1 < Pg < 0.5.
Where Ps > 0.9 is of concern, the error rates are less than 1%.

2.5 Discussion on the Results

In this section, we gave three alternative expressions of the success probability
in a linear attack, (9), (13), and (15); all assuming that the 7; counters are
independent and can be approximated by a normal distribution, and that the
linear approximation has a zero bias for wrong keys. (15) is the most accurate
among the three, but it is also the most costly to calculate and is limited to
a =m. (9) is a more general expression, not limited to a = m, obtained by the
normal approximation to the order statistics. (13) is a simplification of (9), by
the observation of 02 < 03. It gives an expression of the success probability as
a function of the advantage a, independent of m, and also gives a formula for
calculating the amount of plaintext required for a certain success probability.

We would like to note it again that the probability calculations in this section
assume that the linear approximation’s bias is zero for all wrong keys, which is
the ideal case for the attacker but may not be true in practice. Therefore, the
probability calculations here must be taken as an upper bound.

Finally, we would like to note that the one bit of key information derived
in a linear attack from the xor of the key bits on the right-hand side of the
approximation is not included in our notation of the advantage a. Counting that
bit of information, the advantage of the attack would be a + 1 bits, if the xored
bits are not all included among the derived key bits.



3 Success Probability in Differential Cryptanalysis

In a differential attack, the attacker first finds a characteristic of the cipher at-
tacked. A characteristic is a sequence of differences between the round inputs
in the encryption of two plaintext blocks with a given initial difference. For a
characteristic to be useful in an attack, a plaintext pair with the given initial
difference must have a non-trivial probability to follow the given sequence of
differences during encryption. After having such a characteristic, the attacker
collects a large number of plaintext-ciphertext pairs with the given initial dif-
ference. Assuming that the characteristic is followed at the inner rounds of the
cipher, each pair will suggest a set of candidates for the last round key.? When
a pair is a “right pair”, which followed the characteristic, the actual key will
always be among the keys suggested. If the pair is “wrong”, it may be detected
and discarded, or, otherwise, it will suggest a set of random keys. After process-
ing all collected pairs and counting the keys they suggest, the key value that is
suggested most will be taken as the right key.

An important measure for the success of a differential attack is the propor-
tion of the probability of the right key being suggested by a right pair to the
probability of a random key being suggested by a random pair with the given
initial difference. This proportion is called the “signal-to-noise ratio”. Biham and
Shamir [1] observed a strong relation between the signal-to-noise ratio and the
success chance of an attack. By empirical evidence, they suggested that when the
signal-to-noise ratio is around 1-2, about 20—40 right pairs would be sufficient;
and when the signal-to-noise ratio is much higher, even 3—4 right pairs would
usually be enough.

3.1 Distribution Parameters

We use a notation similar to the one used for linear cryptanalysis: m is the
number of key bits attacked; N denotes the total number of pairs analyzed.
ko denotes the right key, k;,1 < ¢ < 2™ — 1, denote the wrong keys. p; is the
probability of k; being suggested by a plaintext pair; 7; counts the number of
times k; is suggested. W;,1 < i < 2™ — 1, denote T3,¢ # 0, sorted in increasing
order. The probability of the characteristic is denoted by p, and u = pN denotes
the expected number of right pairs. p, is the average probability of some given
key being suggested by a random pair with the given inital difference. Sy denotes
the signal-to-noise ratio, p/p,.

In our analysis, we assume that the T; values are independent and that they
are identically distributed for ¢ # 0. The latter assumption means that all wrong
keys have the same chance of being suggested by a random pair. That is, all
pi,i # 0, are identical. We denote this probability by pw .

The T; counters have a binomial distribution, B(N, po) for Ty and B(N, pw)
for T;,i # 0. We denote these distribution functions by Fy and Fy, and their
density functions by fo and fy, respectively. In a typical differential attack, N

2 If a pair suggest no keys, it is certainly a “wrong pair” and can be discarded.



is very large and therefore these binomial distributions can be approximated by
normal distributions, N (po, 03) and N (uw, 0%,), where the distribution param-
eters are,

po=p+(1—ppr=p+p;, po=noN, 08 =po(1 — po)N =~ pyN,
pWw = Dr, pw =pwN, o, =pw(l—pw)N ~pwN.

3.2 Success Probability

In an a-bit advantage attack, success is defined by getting k¢ ranked within the
top 2™~ ® candidates; that is, Ty > Wom _gm-o. We denote 2 — 2™~2 by 7.

An analysis along the same lines as the one on linear cryptanalysis—with
the only major difference being that the Tjs here have a normal distribution,
whereas the Y;s in linear cryptanalysis had a folded normal—gives

Py = / T @) de, (16)

__ko—Hg

/21,2
optog

where Mg = PW + U'st_l(]. - 2_0'), O¢q = WQ_T”TM. For 0'3 < US,
we have

Ps = / T @) ds. (17)

KO0~ Hq
70

The lower bound of the integral can be written in terms of the signal-to-noise
ratio as,

—pio + ftg _ —PoN +pwN + /pwNS 1(1-279)
00 Voo N
_pN 4 /p NG (1 -2 )

Vo +p)N
—\/p_N\/ P +\/ Pr_g-1(1 _9-0)

p+Dpr p+Dpr
Sn 1 4 B
= — [0} 1—-27%), 1
\/ﬁ\/SN+1+\/SN+1 (127 a8)

Hence, the following result is obtained for the success probability:

Theorem 3. Let Ps be the probability that a differential attack on an m-bit key,
with a characteristic of probability p and signal-to-noise ratio Sy, and with N
plaintext-ciphertext pairs, delivers an a-bit or higher advantage. Assuming that
the key counters are independent and that they are identically distributed for all
wrong keys, we have, for sufficiently large m and N,

o0
P = [ s, 9la)da, (19)
T sntr

where = pN.



Corollary 2. With the same assumptions of Theorem 3, the number of plaintext-
ciphertext pairs required to have a certain success probability Ps in an a-bit ad-
vantage differential attack is

2

(VSv +10 1 (Ps)+ o 1(1-27)" _,

N = S p . (20)

A numerical calculation of (19) for Sy = 1 and Sy = 1000 is given in
Table 3 to provide a comparison with Biham and Shamir’s empirical results [1].
The values very much agree with their observations for large Sy . For small Sy,
the suggested 20—40 right pairs give a good success chance only for a < 20. To
have a good success chance for larger values of a as well, 80 or more right pairs
would be needed.

la[lu=20[u = 40[u = 60]u = 80]p = 100]p = 120]
81[0.900 [ 0.995 | 1.000 | 1.000 | 1.000 | 1.000
16]] 0.585 | 0.936 [ 0.994 [ 1.000 | 1.000 | 1.000
32[[ 0.107 [ 0.527 [ 0.858 | 0.973 | 0.996 | 1.000
48][ 0.010 [ 0.151 | 0.490 | 0.794 | 0.942 | 0.988

(a) Sy =1

Lalln=4[p =5[]p = 6]p = 7| = 8[u = 9|
81/0.972|0.9840.9910.995|0.997|0.998
16{/0.969(0.98210.990(0.994 (0.997|0.998
32((0.964|0.979|0.988{0.993|0.996|0.998
48(10.960)0.9770.986|0.992|0.995|0.997

(b) Sy = 1000

Table 3. Probability of achieving an a-bit advantage for various values of the expected
number of right pairs u, according to equation (19).

3.3 Accuracy of the Approximations

The normal approximation for the binomial T can be expected to be quite good
in general, since typically po(1 — po) N will be at least 4 or higher. However, the
same cannot be said for other T;s if Sy is large, which implies pw N = u/Sn
will be very small. In those cases, instead of using ow ®~1(1 — 27%) for p,, the
actual pu, = Fy' (1 —27%) can be used where Fyy is the binomial distribution
B(N, pw)- However, this method should be preferred only if a high precision is

10



required, since a numeric calculation of Fv}l would be very costly. Otherwise, if
a high precision is not required, we believe the results obtained by the normal
approximation are reasonably good, especially considering the fact that the value
of u is dominated mostly by ! (Ps) rather than Fy;' (1—27%) when Sy is large.
When Sy is small, the normal approximation should be good for all Tj;s, since
in that case p = pN will be taken higher and pw (1 — pw)N will be sufficiently
large as well.

Regarding the normal approximation for the order statistics, it is usually
accepted to give a good approximation for fairly large n, as we discussed in
Section 2.4. We have n = 2™ — 1; so, we do not expect this approximation to
cause any serious problems, especially as long as m > 16. The goodness of the
approximation can be tested efficiently for a = m. For this case, a quick analysis,
again assuming the independence of the counters and the normal approximation
for the binomial distribution, gives,

Psom) = [ Z ( / OO fw(y)dy>2m_1 fole) d

m™—1

0 e/sntlt Jasn 2
- / (/ ¢<y)dy) o()dz. (21)

—0o0 — 00

We calculated (21) for m < 32. The results match the results in Table 3 with an
error rate of less than 4%. As in linear cryptanalysis, the relatively high error
rates occur for the smaller values of Pg. For Ps > 0.90, the error rate is much
less than 1%.

3.4 Discussion on the Results

We gave three expressions of the success probability in differential cryptanalysis,
similar to those in linear cryptanalysis. Among them, (21) is the most accurate
but is also the most expensive to calculate, and it is limited to a = m. (16)
is a more general expression, applicable to arbitrary a, m, and assumes the
normal approximation for the order statistics. (19) is a simplification of (16) for
ag < 03, which gives an expression for the success probability independent of m
and a formula for calculating the required amount of data for a certain success
probability.

4 Conclusions

We presented an analytical calculation of the success probability and the data
requirement of linear and differential attacks. The derived formulae can be com-
puted very efficiently and they provide a practical tool for the success probability
estimation. We conjecture the approximations and assumptions taken during the
analysis to be reasonably good, especially in the case of differential cryptanaly-
sis. The assumption of negligible bias for all wrong keys in linear cryptanalysis

11



is likely to be unrealistic in certain attacks where the approximation’s proba-
bility is significantly key dependent. The success probability obtained by this
assumption can be used as an upper bound, nevertheless. We leave the analysis
of the exact relationship between the key dependence of a linear approximation
and the ranking of the right key obtained according to that approximation as
an open problem.
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A The Folded Normal Distribution

When a normal random variable is taken without its algebraic sign, the negative
side of the probability density function becomes geometrically folded onto the
positive side. That is, if X has a normal distribution N (u,0?) with density

function
1 _(=p)?
e 27 | —o<z <o,

Ix(@) = oV 2

then Y = |X| has the density function

1 _(y—#)2 _(y+lu)2
frly) = e” =T e 27 ), y>0.
oV 2

The distribution of Y is called a folded normal distribution [4], which we denote
by FN (u,0?). The mean and variance of Y are,

E(Y) = p(1 = 28(—p/0)) + 204(1/0)
Var(Y) = p* + o® — E(Y)2
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