
IND-CCA Secure Encryption Based on Zheng-Seberry

Scheme

Murat Aka,∗, Turgut Hanoymakb,c, Ali Aydın Selçuka

aDepartment of Computer Engineering, Bilkent University, 06800, Ankara, Turkey
bInstitute of Applied Mathematics, METU, 06800, Ankara, Turkey

cDepartment of Mathematics, Yüzüncü Yıl University, 65080, Van, Turkey

Abstract

In 1993, Zheng and Seberry proposed three methods for strengthening public
key cryptosystems. These methods aimed to obtain schemes that are secure
against adaptively chosen ciphertext attacks. One method was improving
security by using digital signatures. Zheng and Seberry gave an example
scheme that employs this method. However, they were not able to prove
IND-CCA security of their cryptosystem. In this paper, we modify this
cryptosystem by employing Schnorr signature scheme and prove this new
scheme to be IND-CCA secure in the random oracle model.

Keywords: Public key cryptography, Zheng-Seberry encryption scheme,
Schnorr signature, provable security, random oracle model

1. Introduction

Since public key cryptography was introduced in 1970s, there has been
a considerable amount of research regarding the correct definition of its se-
curity. Today as the standard definitions of security, we have IND-CPA
(indistinguishability against chosen plaintext attacks) and IND-CCA (indis-
tinguishability against chosen ciphertext attacks, non-adaptive or adaptive)
types of security. The former is a rather loose definition compared to the
latter, and today, any newly proposed scheme is expected to have a proof

∗Corresponding author
Email addresses: muratak@cs.bilkent.edu.tr (Murat Ak),

turguthanoymak@gmail.com (Turgut Hanoymak), selcuk@cs.bilkent.edu.tr
(Ali Aydın Selçuk)

Preprint submitted to J. of Computational and Applied Mathematics June 24, 2013



of IND-CCA security. Therefore, the problem of providing new IND-CCA
secure schemes, proving existing schemes to be IND-CCA secure, and mod-
ifying existing schemes so that they would then be IND-CCA secure, have
been popular research problems for almost the last twenty years.

In 1993, for obtaining IND-CCA secure public key encryption schemes
from basic ElGamal encryption [2], Zheng and Seberry [1] proposed three
immunization methods based on: (1) one-way hash functions, (2) universal
hash families, (3) digital signatures. They illustrated each method by giving
example schemes. They also gave formal proofs of IND-CCA security for the
first two methods. However, they were not able to prove the security of the
scheme that uses digital signatures.

In this paper, we modify this construction by adapting the Schnorr sig-
nature scheme and obtain a slightly more efficient encryption scheme. More-
over, we also give a formal proof of IND-CCA security for the new scheme in
the random oracle model.

2. Related Work

Zheng and Seberry [1] proposed three methods to make public key en-
cryption schemes secure against adaptive chosen ciphertext attacks. As they
state it, the common idea in their methods is to append a tag to each cipher-
text that is correlated to the plaintext being encrypted. Apparently, this
guarantees that any decryption query that an attacker makes can give no
new information about the plaintext, because the attacker already needs to
know the plaintext before asking the query since it is needed to find the tag.

The methods given in [1] differ in the ways they design the tag in the
ciphertext. In the first method, the tag is a one-way function of the plaintext.
The second method uses universal hash families to relate the tag to the
plaintext. And the last method uses digital signatures for the same purpose.

For the first two methods, Zheng and Seberry proposed example schemes
and they were able to prove IND-CCA security for each one. However, the
scheme they gave as an example for the last method was left without a formal
security proof for IND-CCA security. They rather proved that if it is IND-
CPA secure, it will also be IND-CCA secure. However, they were not able
to prove IND-CPA security. The reason was simple: one of the components
involved the hash of the plaintext and it was not clear that whether this
would give away information about the plaintext.

2



2.1. Random Oracles

In 1993, Bellare and Rogaway introduced a new model for proving security
of encryption schemes: the random oracle model (ROM) [3]. The core idea in
ROM is to assume that truly random functions can exist and hash functions
can be assumed to produce their result truly randomly. This effectively
brought much more efficient schemes into consideration since they can at
least be proven in ROM while the schemes proven in the standard model
were too expensive by that time – until the Cramer-Shoup (CS) cryptosystem
[4]. However, even after the CS cryptosystem, ROM has still been used for
proving schemes secure, as it is accepted to provide at least a strong security
guarantee although it does not really provide certain security.

2.2. Works on Zheng-Seberry Schemes

So far, there has been no concrete studies on the signature-based scheme
of Zheng and Seberry. However, a similar scheme appeared in a different
line of research by Abe [5]. The main result of [5] was a generic method
for obtaining IND-CCA secure public-key encryption schemes by using weak
primitives. Two schemes, one of which is similar to ours, were discussed as
instantiations to this generic scheme. We observed that although the schemes
look similar, our scheme outperforms the instantiation of [5] by requiring
fewer exponentiations for both encryption and decryption operations. More
precisely, our scheme requires two exponentiations for both ecryption and
decryption whereas instantiation of [5] requires three for both.

3. Background

In this section, we present the background knowledge. First, we mention
the security definitions we use. Then, we discuss the random oracle model
and security models. Finally, we recall the signature-based scheme of [1].

3.1. Security of Encryption Schemes

Security of cryptographic schemes are formalized with two components:
(1) The goal of the attacker. (2) Abilities of the attacker. Today, it is widely
accepted that the goal of the attacker should be to distinguish among two
plaintexts given the ciphertext of one of them. Thus, if a scheme is secure
against this kind of attack, given a ciphertext, it would be impossible for the
attacker to induce any non-trivial information about the plaintext. This is
called as indistinguishability (IND) or semantic security. When it comes to
the abilities of the attacker, we have three different types:

3



• Chosen plaintext attack (CPA): Attacker has no ability to learn the
decryption of any ciphertext he chooses.

• Chosen ciphertext attack (CCA1): Attacker can ask for the decryption
of a polynomial number of ciphertexts he chooses—but only before he
sees the challenge ciphertext.

• Adaptive chosen ciphertext attack (CCA2): Attacker can also ask for
decryptions after the challenge—but he is not allowed to ask for the
decrpytion of the challenge ciphertext for obvious reasons.

3.2. Security Models

The security of cryptographic schemes are typically modeled in the form of
a game between a hypothetical attacker A and a challenger C that represents
the scheme. Now, suppose that we have a public key encryption scheme S
consisting of the usual three algorithms, KeyGen(1λ), Encrypt(pk,m), and
Decrypt(sk, c). IND-CPA/CCA security is modeled with Game 1.

Game 1 IND-CPA and IND-CCA1/2 games.

1: C prepares an instance of a scheme by running (pk, sk)← KeyGen().
2: C passes the public key pk to A.
3: (Only in IND-CCA) Amakes polynomially many decryption queries with

ciphertexts and C responds with the decryptions.
4: A chooses two messages m0,m1 and requests a challenge.
5: C selects a random bit b ←R {0, 1} and sends c∗ ← Encrypt(pk,mb) to
A as the challenge ciphertext.

6: (Only in IND-CCA2) A makes polynomially many decryption queries
with ciphertexts other than c∗ and C responds with the decryptions.

7: A guesses b′ for b and wins if b′ = b.

In a typical indistinguishability proof, the advantage of the attacker,
AdvA ← |Pr[b

′ = b]− 1/2|, must be proved to be negligible.

3.3. Computational and Gap Diffie-Hellman Assumptions

One of the most famous problems that is used in cryptography is the
computational Diffie-Hellman (CDH) problem [6]. Formally, the CDH prob-
lem is defined as follows: Let G be a cyclic group of order q. Given three
group elements g, ga, gb, where a, b ∈ Zq, compute gab. The CDH problem is

4



assumed to be hard, meaning that it is computationally intractable, i.e., has
no polynomial-time solution.

Decisional Diffie-Hellman (DDH) problem is the decisional counterpart
of the CDH problem: Again, let G be a cyclic group of order q. Given a
generator g, and three group elements ga, gb, gc, where a, b, c ∈ Zq, decide
whether gc = gab. DDH assumption states that the DDH problem is hard.

We will use another Diffie-Hellman variant, the Gap Diffie-Hellman (GDH)
problem, introduced by Okamoto and Pointcheval [7]: Let G be cyclic group
of order q with a generator g. Given ga, gb and a DDH oracle, compute gab.
Basically, GDH problem is the same as CDH problem, except this time, an
oracle to decide DDH problem is given.

Here we define a variant of Computational Diffie-Hellman problem, which
we call Π:

Definition 1 (Problem Π). Given (ga, gb, A,B), for randomly chosen val-
ues (a, b, A,B) ∈ Zq, compute ga(b+c), where c = Bb+ A.

Proposition 1. The problem Π is equivalent to the CDH problem.

Proof. We prove that Π is equivalent to the CDH problem by showing that
these problems can be reduced to each other.

The problem Π can be reduced to the CDH problem as follows: Given a Π
instance (ga, gb, A,B) and a CDH solver, we first calculate gb+c = gb(gb)BgA,
then ask (ga, gb+c) to the CDH solver which outputs ga(b+c), which is exactly
the result of the Π instance we are looking for.

The CDH problem can be reduced to Π as follows: Given a CDH problem
instance (ga, gb) and a Π oracle, we first choose random A,B ∈ Zq where
B 6= −1 and we ask (ga, gb, A,B) to the Π solver and we get y = ga(b+c).
Note that y can be rewritten as y = ga(b+Bb+A) = gabgabBgA. Then, we
can calculate gab as gab = (y/gA)(1+B)−1

and return gab, which is exactly the
result of the CDH problem we are looking for. (Note that, in fact, we could
have also chosen A = 0 and B = 0 so that the result of the Π query would
immediately be the answer of the CDH instance.) �

In the IND-CCA2 security proof of our modified scheme, we will assume
that GDH problem is hard. We will also show that our scheme is IND-CPA
secure under the CDH assumption.

5



3.4. Random Oracle Model

ROM is a model for proving security of encryption schemes. In the proofs
within this model, we assume the existence of an hypothetical box called
random oracle which can produce truly random outputs every time it is
queried with a different input. In practice, cryptographic hash functions
are used instead of random oracles. This model has the advantage that the
inherent weaknesses of hash functions are not considered within the security
proof. This makes it possible to use hash functions in encryption schemes
more effectively and obtain much more efficient cryptosystems compared to
the ones that can be proved in the standard model.

3.5. Zheng-Seberry Scheme with Digital Signature Method

In this section, we will briefly recall the original Zheng-Seberry encryption
scheme that adapts ElGamal signature, called Csig.

Suppose Bob, B, wants to send an n-bit message m in secret to Alice, A,
with A’s public key yA = gxA where xA is the secret key of A. Let G be a
cyclic group of prime order q and let g be a generator of G. Let H be a cryp-
tographic hash function and G be a cryptographically strong pseudorandom
string generator. We denote the set of numbers {i, i+ 1, . . . , j} by [i, j] and
the substring of a from position i to position j by a[i,...,j]. Encryption and
decryption algorithms are as follows:

Algorithm 1 Csig.Encrypt(yA,m)

1: x ∈R [1, q] and k ∈R [1, q − 1].
2: r = yA

x+k and z = G(r).
3: c1 = gx and c2 = gk.
4: c3 = (H(m)− xr)/k mod q.
5: c4 = z ⊕m.
6: C = (c1, c2, c3, c4).

Algorithm 2 Csig.Decrypt(xA, c1, c2, c3, c4)

1: r′ = (c1c2)
xA

2: z′ = G(r′)[1...n]
3: m′ = z′ ⊕ c4
4: if gH(m′) = cr

′

1 c
c3
2 then output m′, otherwise ⊥.

6



The scheme Csig has not been proven IND-CPA secure against chosen
plaintext attacks so far. This is mostly because m appears both c3 and c4
and it is not clear that whether c3 can be used to induce information about
m to break the scheme. In the next section, we will modify this scheme to
get a more efficient one and prove that this new scheme is IND-CCA2 secure.

3.6. Schnorr Signature

Now, we briefly discuss Schnorr signature [8]. Let G be a multiplicative,
prime order group in which the discrete logarithm (DL) problem is hard, and
let g be a generator. Let H be a cryptographic hash function, x and y = gx

be the private and public keys, respectively.

Algorithm 3 S.Sign(g,H, x,m)

1: Choose a random k ∈ Z
∗

q and set r = gk.
2: Compute e = H(m ‖ r) and s = k − xe mod q.
3: Return (e, s) as the signature pair.

Algorithm 4 S.Verify(g,H, e, s, y)

1: Compute rv = gsye and ev = H(m ‖ rv).
2: If ev = e holds, then the signature is verified.

Correctness of the verification algorithm can be shown as follows: rv =
gsye = g(k−ex)gex = gk = r and then, ev = H(m ‖ rv) = H(m ‖ r) = e.

Recall that under the discrete logarithm assumption, the Schnorr signa-
ture scheme [8] is existentially unforgeable under chosen message attacks.
The proof is similar to that of hashed RSA signature scheme. It is also
efficient and generates short signatures.

4. An IND-CCA2 Secure Encryption Scheme

We modify Csig by using the Schnorr signature instead of ElGamal. We
call our new modified scheme Cmsig. This new scheme is indeed IND-CCA2
secure as we will prove below. Also, it turns out to be a more efficient scheme,
since no inversion operation is needed as in Csig.

Let G be a group with prime order q and g be a generator of G. Let xA

be A’s private key and yA = gxA be its public key. B needs to send an n bit

7



Algorithm 5 Cmsig.Encrypt(yA, p, g,m)

1: x ∈R [1, q] and k ∈R [1, q].
2: r = yA

x+k and z = G(r).
3: c1 = gx and c2 = H(m ‖ c1 ‖ r).
4: c3 = k − xc2 mod q.
5: c4 = z ⊕m.
6: C = (c1, c2, c3, c4).

Algorithm 6 Cmsig.Decrypt(xA, p, g, c1, c2, c3, c4)

1: r′ = (gc3c1
c2+1)xA

2: m′ = c4 ⊕G(r′)
3: if (H(m′ ‖ c1 ‖ r

′) = c2 then output m′, otherwise ⊥.

message m ∈ M to A. Let G : G → M and H :M× G
2 → {1, . . . , q} be

cryptographic hash functions. Encryption and decryption works as follows:
Correctness of the scheme can be checked easily as follows:

r′ = (gc3c1
c2+1)xA = (gk−xc2gxc2+x)xA = (gkgx)xA = yA

x+k = r

m′ = c4 ⊕G(r′) = c4 ⊕G(r) = m

H(m′‖c1‖r
′) = H(m‖c1‖r) = c2

Regarding the time complexity of this scheme, note that compared to the
original ZS scheme, the inversion operation is no more needed and we need
fewer exponentiations for both encryption and decryption.

5. Security Analysis

In this section, we prove that our modified scheme Cmsig is IND-CCA2
secure in the ROM, under the GDH assumption. First, recall that in ROM,
we have the following crucial random oracle property:

ROP. The output of a random oracle H to an input a stays truly random
unless H(a) is explicitly queried.

Theorem 2. The encryption scheme Cmsig is IND-CCA2 secure in the ran-

dom oracle model if the GDH assumption holds in the underlying group.

8



Proof. The proof consists of two parts: (1) proving that the scheme is
IND-CPA secure, (2) proving that the scheme is plaintext aware. It is a well-
known fact that these two properties imply IND-CCA2 security [10]. We will
prove IND-CPA security under the CDH assumption which already implies
GDH assumption since CDH is a simpler assumption. However, as we will
mention after the proof, a similar and even better proof that assumes GDH
is also possible.

Lemma 1. The encryption scheme Cmsig is IND-CPA secure in the random

oracle model under the CDH assumption.

Proof. Assume that there exists an attacker ACPA that can win the IND-
CPA game against Cmsig with a non-negligible probability ε. Then, there
exists a solver, SΠ, that can solve the problem Π with a non-negligible prob-
ability ε′. This solver SΠ makes use of ACPA to solve an arbitrary Π instance
(ga, gb, A,B) as follows:

First, although SΠ does not know a, it implicitly sets xA to a, by sending
yA = ga as the public key to ACPA. Then, ACPA makes random oracle queries
which SΠ responds by choosing a random value and returning it for any new
query. The solver SΠ maintains a list of queries denoted by

ℓH = ((µ1‖u1‖v1), H1), ((µ2‖u2‖v2), H2), . . . , ((µαH
‖uαH

‖vαH
), HαH

) and

ℓG = (r1, G1), (r2, G2), . . . , (rαG
, GαG

)

After the first query phase, ACPA will output two messages m0 and m1.
At this point, SΠ chooses a random bit d and prepares a challenge c∗ =
(c∗1, c

∗

2, c
∗

3, c
∗

4) that is indistinguishable for ACPA from a real encryption of
md. SΠ first sets c∗1 = gb, implicitly setting x∗ = b. It also sets k∗ =
Bb+A implicitly. Then, it sets c∗2 = B and adds a special incomplete record,
(mb‖c

∗

1‖?), B), to ℓH . It also sets c∗3 = A. Finally, SΠ randomly chooses c∗4
and adds a special record (?, c∗4 ⊕ md) to ℓG. SΠ sends this challenge c∗ to
ACPA and whenever ACPA makes a random oracle query in the new query
phase, SΠ responds as in the first query phase. After the second query phase
is over, ACPA returns a guess d′ for d. Finally, SΠ arbitrarily chooses one of
the query inputs vi or ri from lists ℓH and ℓG and returns it.

Let us define the followings events regarding this game:
AskH is the event where ACPA makes the query H(md‖g

b‖yx
∗+k∗

A ).
AskG is the event where ACPA makes the query G(yx

∗+k∗

A ).

9



Now, note that Pr[d = d′ | ¬AskH∧¬AskG] = 1/2. This is simply because
unless exactly these queries are explicitly done, the challenge ciphertext con-
tains no information about md at all due to the random oracle property ROP.
On the other hand, let Pr[d = d′ | AskH∨AskG] = β. Now, note that since we
assumed |Pr[d = d′]− 1/2| to be non-negligible so must be Pr[AskH ∨ AskG].
Because otherwise, |Pr[d = d′]− 1/2| would immediately be negligible. But
then, since SΠ succeeds with probability Pr[AskH ∨ AskG]/(ℓH + ℓG), which
would also be non-negligible because the queries can only be polynomially
many. Given problem Π is hard, such an attacker ACPA cannot exist. There-
fore, Cmsig is IND-CPA secure. �

Remark. Note that if we use the GDH assumption, SΠ could have checked
whether particular queries include the critical value (yx

∗+k∗

A ) and return
the correct answer directly. In this case, we could proceed with the same
proof above and at the end, we could say that SΠ succeeds with probability
Pr[AskH ∨ AskG], which even gets rid of the polynomial fraction.

Below, in Lemma 2, we are going to show that Cmsig is plaintext aware.
This security notion was first introduced by Bellare and Rogaway [9]. Ac-
cording to this initial definition given by [9], an encryption scheme is said to
be plaintext aware (PA) if it is computationally hard for any polynomial time
adversary to generate a valid ciphertext without knowing the corresponding
plaintext with non-negligible probability. This guarantees that before the
adversary learns any ciphertext, she must already be aware of its plaintext.
This, in turn, means that the decryption oracle in an IND-CCA game would
not be useful for the adversary. This is the intuition why we get IND-CCA2
security when we add PA to IND-CPA security. However, the model of
[9] did not capture attacks where the adversary can obtain ciphertexts via
eavesdropping. In [10], such attacks are also captured by giving the adversary
access to an encryption oracle. But, of course, the adversary is prohibited to
return the result of an encryption oracle query. With this refinement done,
PA, together with IND-CPA security, correctly implies IND-CCA security.
So, the plaintext awareness definition we adapt is as follows, borrowed from
[10]:

Definition 2 (Plaintext Awareness). Let PE = (K, E ,D) be an encryp-
tion scheme. Let A be an attacker that is given access to random oracle(s)
H and an encryption oracle ÊHpk, can output valid ciphertexts with a non-

negligible probability ε. We denote this by y ← AH,ÊH
pk(pk). Let K be an

10



algorithm (called knowledge extractor) which takes input-output records of
H, ℓH , outputs of Ê

H
pk, C, and the output of A, y, as input, and outputs D(y)

or in case of an invalid ciphertext, it outputs ⊥ with success probability λ.
We denote this by m = D(y)← K(ℓH , C, y, pk).

We say that E is plaintext aware if for all attackers A, there exists a K
that has a non-negligible success probability λ.

A PA attacker A takes the public key pk, has access to random oracle H
and an encryption oracle ÊHpk and aims to produce a valid ciphertext with-
out knowing its plaintext. We need to show that any such attacker has a
negligible success probability. In PA proofs, an algorithm called knowledge

extractor is constructed to show that the attacker can easily find the de-
cryption of any ciphertext it produced without knowing the private key. In
a sense, this means that the attacker can readily know the plaintext of any
ciphertext it produces, which means that decryption oracle would have no
use for it.

Lemma 2. The encryption scheme Cmsig is plaintext aware in the random

oracle model if the GDH assumption holds in the underlying group.

Proof. Let P be a PA attacker that has access to public key yA, oracles
H and G, as well as an encryption oracle εH,G

yA
. We define SP as the event

where a ciphertext produced by a single run of P is valid and denote the
probability of SP with Pr[SP ]. We will construct a knowledge extractor K,
which can find the decryption of any ciphertext created by P , by observing
its queries. We define SK as the event where K succeeds. We will show that
if Pr[SP ] is non-negligible, then so is Pr[SK ].

Let xA and yA = gxA be the private and public keys, let c = (c1, c2, c3, c4)
be a ciphertext produced by P and let the queries of P be as follows:

ℓH = ((µ1‖u1‖v1), H1), ((µ2‖u2‖v2), H2), . . . , ((µαH
‖uαH

‖vαH
), HαH

),

ℓG = (r1, G1), (r2, G2), . . . , (rαG
, GαG

) and

ℓE = (m1, C1), (m2, C2), . . . , (mαE
, CαE

).

On input (yA, c, ℓG, ℓH , ℓE) where c = (c1, c2, c3, c4), K works as follows:

1. It searches for c2 in the list ℓH and upon finding c2 = Hi, retrieves µi.

11



2. K calculates µi⊕c4 and similar to the above reasoning, this value must
appear as a Gj. Otherwise, that means no G query has returned µi⊕c4
yet, therefore the probability that c4 is consistent with c2 is 1/|M| due
to the random oracle property ROP.

3. Then, K compares the oracle queries rj and vi. If they are equal, it
concludes rj = vi = yA

x+k.

4. K also checks whether c1 = ui.

5. Finally, K computes gk from gc3(c1)
c2 , and with the help of the DDH

oracle, it checks whether (g, gxgk, gxA , rj) is a DDH tuple.

6. If all these checks succeed, K returns µi, otherwise it returns ⊥.

First note that, once the second component, c2, of a ciphertext is fixed, it
implicitly determines all other components. Therefore, as long as the output
of the attacker contains c2 from any previously eavesdropped or obtained
ciphertexts, all other components also have to be the same. However, it
is not allowed to output a previously observed ciphertext. Therefore, we
conclude that the attacker has to obtain a newly created c2 and this would
require a query to H necessarily. In such a case, K successfully finds an Hi

that equals c2 and as long as other components are consistent with c2, it
returns µi which has to be the correct message.

If the attacker creates an invalid ciphertext, on the other hand, K can
detect its invalidity with the checks at steps (2) through (5) and return ⊥.

Since the attacker’s only success chances other than already knowing the
plaintext are guessing either c2 or c4 exactly, we can write:

Pr[SP ] ≤ Pr[SK ] + 1/q + 1/|M|

which means that the K we constructed has a success probability close to
that of the PA attacker P . �

The proof of the main theorem is therefore complete. Recall again that
GDH assumption already implies the CDH assumption, and PA together
with IND-CPA security implies IND-CCA2 security.

6. Conclusion

We modified the Zheng-Seberry encryption based on digital signatures by
employing the Schnorr signature and we obtained a new IND-CCA2 secure
encryption. We prove the security of this new scheme in the random oracle

12



model by proving it is IND-CPA secure and also plaintext aware. The new
scheme is also faster than the original Zheng-Seberry encryption with digital
signatures since it requires fewer number of exponentiations in encryption
and decryption algorithms and no inversions are needed. As for future work,
one might be interested in building a similar encryption scheme that will be
proven secure in the standard model, or one that will be proven plaintext
aware assuming CDH instead of GDH.

References

[1] Y. Zheng, J. Seberry. Immunizing public key cryptosystems against cho-
sen ciphertext attacks. IEEE J. on Selected Areas in Comm. 11(5): 715–
724 (1993).

[2] T. Elgamal. A public key cryptosystem and a signature scheme based on
discrete logaritms. IEEE Trans. on Inf. Theory 31(4): 469–472 (1985).

[3] M. Bellare, P. Rogaway. Random oracles are practical: A Paradigm for
designing efficient protocols. ACM CCS’93.

[4] R. Cramer, V. Shoup. A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack. CRYPTO’98.

[5] M. Abe. Combining Encryption and Proof of Knowledge in the Random
Oracle Model. Computer J. 47(1): 58–70 (2004). CRYPTO’98.

[6] W. Diffie, M. E. Hellman. New Directions in Cryptography. IEEE Trans-

actions on Information Theory 22(6): 644–654, (1976).

[7] T. Okamoto, D. Pointcheval. The Gap-Problems: A New Class of Prob-
lems for the Security of Cryptographic Schemes. PKC’01.

[8] C. P. Schnorr. Efficient identification and signatures for smart cards.
CRYPTO’89.

[9] M. Bellare, P. Rogaway. Optimal Asymmetric Encryption: How to en-
crypt with RSA. EUROCRYPT’94.

[10] M. Bellare, A. Desai, D. Pointcheval, P. Rogaway. Relations among no-
tions of security for public-key encryption schemes. CRYPTO’98.

13


	Introduction
	Related Work
	Random Oracles
	Works on Zheng-Seberry Schemes

	Background
	Security of Encryption Schemes
	Security Models
	Computational and Gap Diffie-Hellman Assumptions
	Random Oracle Model
	Zheng-Seberry Scheme with Digital Signature Method
	Schnorr Signature

	An IND-CCA2 Secure Encryption Scheme
	Security Analysis
	Conclusion

