Block Ciphers
Lucifer, DES, RC5, AES

BİL 448/548
Internet Security Protocols
Ali Aydın Selçuk
Block Ciphers & S-P Networks

- Block Ciphers: Substitution ciphers with large block size \(\geq 64 \) bits
- How to define a good substitution for such large blocks?
- “SP Networks” (Shannon, 1949)
 - small, carefully designed substitution boxes (“confusion”)
 - their output mixed by a permutation box (“diffusion”)
 - iterated a certain number of times
Lucifer

- Early 1970s: First serious needs for civilian encryption (in electronic banking)
- IBM’s response: Lucifer, an iterated SP cipher
- Lucifer (v0):
 - Two fixed, 4x4 s-boxes, \(S_0 \) & \(S_1 \)
 - A fixed permutation \(P \)
 - Key bits determine which s-box is to be used at each position
 - \(8 \times 64/4 = 128 \) key bits (for 64-bit block, 8 rounds)

\[E_K(x) \]
Feistel Ciphers

- A straightforward SP cipher needs twice the hardware: one for encryption (S, P), one for decryption (S⁻¹, P⁻¹).
- Feistel’s solution:

\[
E_K(x) = \underbrace{f(x, k_1) \oplus f(f(f(\ldots f(x, k_1) \oplus f(f(\ldots f(x, k_1) \oplus \ldots \oplus f(x, k_1) \oplus \ldots \oplus f(x, k_1)) \oplus \ldots \oplus f(x, k_1)) \oplus \ldots \oplus f(x, k_1)) \oplus \ldots \oplus f(x, k_1))}_{E_K(x)}
\]

where the \(f \) function is SP:

- Lucifer v1: Feistel SP cipher; 64-bit block, 128-bit key, 16 rounds.
Data Encryption Standard (DES)

• Need for a standardized cipher to protect computer and communications data

• NBS’ request for proposals (1973)

• IBM’s submission Lucifer is adopted after a revision by NSA, reducing the key size to 56 bits.
The DES Controversy

• Design process was not made public. Any hidden trapdoors in the s-boxes?
 (Now, with the design criteria better understood, this speculation is mostly over.)

• 56-bit key length is too short. So that NSA can break it?
Strengthening DES

- Multiple DES encryption

 3DES: $E_{K3}(D_{K2}(E_{K1}(x)))$

- DES-X (Rivest, 1995)

 $E_K(x \oplus K1) \oplus K2$

 - overhead cost minimal
 - construction is provably secure (Rogaway & Killian)
After the DES

- DES was designed mainly for h/w; it was slow in s/w. It was also suspect, due to the secret design process.

- By the late ’80s, need for an independently developed, fast-in-s/w cipher was clear.

- Several prominent examples emerged in this era: IDEA, Blowfish, RC5…
RC5
(Rivest, 1994)

- Extremely simple & flexible
- Variable block size (w), key size (b), no. of rounds (r); specified as RC5-w/r/b.
- Encryption algorithm:
 \[L_1 = L_0 + K_0 \]
 \[R_1 = R_0 + K_1 \]
 \textbf{for} \ i = 2 \ \textbf{to} \ 2r+1 \ \textbf{do} \\
 \quad L_i = R_{i-1} \\
 \quad R_i = ((L_{i-1} \oplus R_{i-1}) \ll \ R_{i-1}) + K_i \\
- For 64-bit block size (w=32), 24 rounds (r=12) is secure
Advanced Encryption Standard (AES)

Successful public design process:

- NIST’s request for proposals for a new enc. standard to replace DES (1997)
- 5 finalists (1999)
 - Mars (IBM)
 - RC6 (RSA)
 - Twofish (Schneier et al.)
 - Serpent (Anderson et al.)
 - Rijndael (Daemen & Rijmen)
- Winner: Rijndael (2000)
AES (Rijndael)

- An SP cipher with one algebraically designed s-box (optimal against linear & diff. cryptanalysis)
- 128-bit block size
 - 128, 192, or 256-bit key.
- 10-14 rounds of:
 - ByteSub, ShiftRow, MixColumn, AddRoundKey
- Decryption is similar to encryption (by design)
- Very good security; also very high performance in s/w, h/w, and restricted devices (smart cards)