Encrypting with Block Ciphers

BİL 448/548 Internet Security Protocols Ali Aydın Selçuk

How to Encrypt with a Block Cipher?

Electronic Codebook (ECB) Mode:

- The naive way.
- The plaintext is divided into blocks P_i, each block is encrypted independently: C_i = E(P_i) P_i = D(C_i)
- Problem: Leaks information about identical blocks

An Illustration – The Plaintext

An Illustration – ECB Encrypted

Cipher Block Chaining (CBC)

Add randomization to the plaintext by mixing with the previous ciphertext:

 $C_i = E(P_i \oplus C_{i-1})$ $P_i = D(C_i) \oplus C_{i-1}$

- Initialization Vector (IV): used instead of C₀ when encrypting/decrypting the first block. (not a secret)
- Most common mode in practice
- Features:
 - Error propagation: 1 wrong bit corrupts 1 block + 1 bit
 - Allows random access to the ciphertext
 - Decryption is parallelizable

An Illustration – CBC Encrypted

Output Feedback (OFB) Mode

- Block cipher is used as the PRNG in a stream cipher.
- A key stream is generated from the output: $O_i = E(O_{i-1})$ $C_i = P_i \oplus O_i$ $P_i = C_i \oplus O_i$
- IV used for O₀
- Features:
 - Error propagation minimal (bit for bit)
 - Preprocessing possible (may be good for multimedia)
 - Doesn't allow random access; not parallelizable

Cipher Feedback (CFB) Mode

- A key stream is generated from the ciphertext: $O_i = E(C_{i-1})$ $C_i = P_i \oplus O_i$ $P_i = C_i \oplus O_i$
- IV used for C₀
- Features:
 - Error propagation: 1 bit + 1 block
 - Allows random access
 - Decryption is parallelizable

Counter (CTR) Mode

A key stream is generated by encrypting a counter:

 $C_i = P_i \oplus E(IV + i - 1)$ $P_i = C_i \oplus E(IV + i - 1)$

- Features:
 - Error propagation minimal (bit for bit)
 - Preprocessing possible
 - Allows random access
 - Both encryption and decryption are parallelizable