Message Authentication

- MAC: “message authentication code”

- A checksum (MAC) is computed over the message using the secret key & is transmitted.
- Message is accepted as authentic if the receiver also obtains the same checksum value.
Message Authentication Codes (MAC)

• A keyed checksum of the message.

• Sender of a message M computes $c = \text{MAC}_K(M)$ and sends (M,c) to the receiver.

• Receiver also computes $c' = \text{MAC}_K(M)$. If $c' = c$ the message is accepted.

• Example applications:
 – protecting files on an OS against modification
 – authentication of routing messages
MACs (cont’d)

• A MACed message is not necessarily encrypted.

• MAC function doesn’t need to be invertible.

• MAC keys are symmetric. Hence, doesn’t provide non-repudiation. (unlike digital signatures)

• **Security of a MAC:** An attacker shouldn’t be able to generate a valid \((M', c')\) pair, even after seeing many valid message-MAC pairs possibly of his choice (i.e. by a chosen message attack).
MAC from a Block Cipher

How to obtain a MAC from a block cipher?

Suggestion:
- divide message into blocks
- compute a checksum by adding (or xoring) them
- encrypt the checksum with the block cipher

Is this construction secure?
- If the message is not encrypted?
- If the message is encrypted?
CBC-MAC

• Simple CBC-MAC:
 – Compute the CBC over the message with IV = 0. (Q: Why not a random IV?)
 – The last output block is the MAC

Other alternatives:
 – ECB?
 – OFB/CTR?
 – CFB?
Simple CBC-MAC is not exactly secure as a MAC. It has two popular flavors:

- **CMAC** (authentication only)
 - CBC-MAC with some extra processing at the end
 - Recommended by NIST SP 800-38B

- **CCM** (both encryption & authentication)
 - Counter mode encryption with CBC-MAC
 - Recommended by NIST SP 800-38C
 - Used in WPA2