Stream Ciphers

BİL 448/548
Internet Security Protocols
Ali Aydın Selçuk
Stream Ciphers

- Generate a *pseudo-random* key stream & xor to the plaintext.
- Key: The seed of the PRNG
- Traditional PRNGs (e.g. those used for simulations) are not secure.
 E.g., the linear congruential generator: \(X_i = a X_{i-1} + b \mod m \) for some fixed \(a, b, m \).
- It passes the randomness tests, but it is predictable if previous output bytes are known.
Linear Feedback Shift Registers

- Feedback shift register:
 \[x_n \ x_{n-1} \ldots \ldots \ldots \ldots \ x_1 \rightarrow \text{output bits} \ldots \]
 ("register", "feedback", "shift")

- LFSR: Feedback fnc. is linear over \(Z_2 \) (i.e., an xor):

- Very compact & efficient in hardware (e.g., SIM cards)
Stream Ciphers from LFSRs

Desirable properties of f:

- high non-linearity
- long “cycle period” ($\sim 2^{n_1+n_2+\ldots+n_k}$)
- low correlation with the input bits
The A5/1 stream cipher uses three LFSRs.
- A register is clocked if its clocking bit (orange) agrees with one or both of the clocking bits of the other two registers. (majority match)
Software-Oriented Stream Ciphers

- LFSRs are slow in software
- Alternatives:
 - Block ciphers (or hash functions) in CFB, OFB, CTR modes.
 - Stream ciphers designed for software: RC4, SEAL, SALSA20, SOSEMANUK…
RC4
(Rivest, 1987)

- Simple, byte-oriented, fast in s/w.
- Popular: Google, MS-Windows, Apple, Oracle Secure SQL, WEP, WPA, etc.

Algorithm:
- Works on n-bit words. (typically, n = 8)
- State of the cipher: A permutation of \{0,1,...,N-1\}, where \(N = 2^n\), stored at \(S[0,1,...,N-1]\).
- Key schedule: Expands the \(l\)-byte key (typically 40-256 bits) into the initial state table \(S\).
RC4 Key Schedule

The key schedule (i.e., initialization) algorithm:

// typically n = 8, ℓ = 16
for i = 1 to 2^n − 1 do:
 S[i] ← i
i ← 0, j ← 0
for i = 1 to 2^n − 1 do:
 j ← j + S[i] + K[i mod ℓ]
 S[i] ↔ S[j]
RC4 Encryption

The encryption (i.e., the PRNG) algorithm:

\[
i \leftarrow 0, \ j \leftarrow 0 \\
\text{loop: } \{ \\
\quad i \leftarrow i + 1 \\
\quad j \leftarrow j + S[i] \\
\quad S[i] \leftrightarrow S[j] \\
\quad \text{output } S[S[i] + S[j]] \\
\}\]

• Use of an initialization vector is crucial in a stream cipher.
• Otherwise, the same stream will be produced each time the key is used (i.e., for each packet).
• The cipher may specify how to incorporate the IV. e.g., A5/1 mixes 22-bit frame no. into registers.
• Otherwise, ad hoc methods are used. e.g., WEP uses RC4 with 128-bit $K' = (IV || K)$ for a 24-bit IV and a 104-bit K.
Speed of Software Stream Ciphers

(Crypto++ 5.6 benchmarks, 2.2 GHz AMD Opteron 8354. March 2009.)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Speed (MiByte/s.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3DES / CTR</td>
<td>17</td>
</tr>
<tr>
<td>AES-128 / CBC</td>
<td>148</td>
</tr>
<tr>
<td>AES-128 / CTR</td>
<td>198</td>
</tr>
<tr>
<td>RC4</td>
<td>124</td>
</tr>
<tr>
<td>SEAL</td>
<td>447</td>
</tr>
<tr>
<td>SOSEMANUK</td>
<td>767</td>
</tr>
<tr>
<td>SALSA20</td>
<td>953</td>
</tr>
</tbody>
</table>