

Cryptographic Hash Functions

- Maps an arbitrary length input to a fixed-size output.
- Was originally proposed to generate input to digital signatures.
- · Desirable features:
 - one-way (preimage and second preimage resistant)

Hash Functions

Collision Resistance

- Assume a collision can be found (i.e., two messages

- Alice generates two such messages and signs one of

them. Later, she denies her signature and claims she

 But why "collision resistance"? (i.e., not just one-wayness?)

in fact signed the other one.

with the same hash)

- pseudorandom

Bil448, A.A.Selçuk

- collision resistant

Pre-image & Collision Resistance

Hash Functions

- Pre-image resistance: Given y, it should be hard to find M s.t. H(M) = y.
 Second pre-image (weak collision) resistance: Given M₁, it should be hard to find M₂ ≠ M₁, H(M₂) = H(M₁). (Why necessary?)
- (Strong) Collision resistance: It should be hard to find any M₁ ≠ M₂, H(M₁) = H(M₂). (Why necessary?)

Bil448, A.A.Selçuk

3

• Birthday Problem ("paradox"): When \sqrt{N} or more

are chosen randomly from a domain of N, there

• Hence, output size \geq 256 bits is desirable.

```
Bil448, A.A.Selçuk
```

Hash Functions

4

2

Hash Fnc. from a Block Cipher

Compression fnc. from block cipher (Rabin):

- Split the message into key blocks. (why not pt.?)
- Encrypt a constant (e.g. 0) with this seq. of keys.
- Ciphertext is the hash output.

Bil448, A.A.Selçuk

Hash Functions

7

Hash Fnc. from a Block Cipher (cont.)
Davies-Meyer Construction:
H_i = H_{i-1} ⊕ E_{mi}(H_{i-1})
Compression function is provably secure (collision resistant) if E is a secure block cipher.

Hash Functions

Bil448, A.A.Selçuk

8

	SHA-3	
 Public competition NIST's request 51 submissions 14 semi-finalists 5 finalists (2010) Winner: Keccal Designed by B Based on "spot different structor 	n by NIST, similar to for proposals (2007 ; (2008) s (2009))) c (2012) ertoni, <u>Daemen</u> , Peete nge construction", a cou	o AES: ') rs, Van Assche. mpletely
Bil448, A.A.Selçuk	Hash Functions	12

Speed Comparisons

Algorithm	Speed (MiByte/s.)		
AES-128 / CTR	198		
MD5	335		
SHA-1	192		
SHA-256	139		
SHA-3	~ SHA-256		

Crypto++ 5.6 benchmarks, 2.2 GHz AMD Opteron 8354

13

- NIST expects SHA-2 to be used for the foreseeable future.
- SHA-3: A companion algorithm with a different structure and properties.

Hash Functions

Dil449 A A Solouk		
DII440, A.A. Selçuk		

```
<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><table-container>
```


VMAC

- Proposed by Ted Krovetz in 2006.
- Based on a universal hash rather than collision resistant hash. (which is fine for MAC)
- Extremely fast (3 GB/sec); adjustable securityspeed tradeoff.
- VMAC-64 is about 10x faster than HMAC-MD5; has a security proof that Pr(forgery) < 2⁻⁶⁰.
- Very suitable for infrastructure (routers) or lowend (RFID, WSN) authentication.

Bil448, A A Selcuk	
Dii 1 10, 7 17 1.00iyun	

Hash Functions

17

Г

Authentication Protocol					
 Challenge-response authentication instead of a password protocol, with a shared secret K. Typically implemented with a block cipher. Possible with a hash function instead of block cipher: 					
Alice _ _ _	hello, r _a H(K r _a), r _b H(K r _b)	Bob			
Bil448, A.A.Selçuk	Hash Functions		18		