Cryptographic Hash Functions

BİL 448/548
Internet Security Protocols
Ali Aydin Selçuk

1

Pre-image & Collision Resistance

• Pre-image resistance:
 Given y, it should be hard to find M s.t.
 \[H(M) = y. \]

• Second pre-image (weak collision) resistance:
 Given \(M_1 \), it should be hard to find \(M_2 \neq M_1 \),
 \[H(M_2) = H(M_1). \]
 (Why necessary?)

• (Strong) Collision resistance:
 It should be hard to find any \(M_1 \neq M_2 \),
 \[H(M_1) = H(M_2). \]
 (Why necessary?)

Collision Resistance

• But why “collision resistance”?
 (i.e., not just one-wayness?)
 – Assume a collision can be found (i.e., two messages
 with the same hash)
 – Alice generates two such messages and signs one of
 them. Later, she denies her signature and claims she
 in fact signed the other one.

• Birthday Problem (“paradox”): When \(\sqrt{N} \) or more
 are chosen randomly from a domain of \(N \), there
 is a significant chance of collision.

• Hence, output size \(\geq 256 \) bits is desirable.
“Birthday Paradox”

E.g. \(N = 10^6 \):

<table>
<thead>
<tr>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>1000</td>
</tr>
<tr>
<td>10000</td>
</tr>
<tr>
<td>100000</td>
</tr>
</tbody>
</table>

Merkle-Damgård Construction

- Input is broken into equal-sized blocks and fed into the compression function.
- Length padding: 100...0 || (length of message). (Why?)
- Finalization: Optional
- Provable security: If \(f \) is collusion resistant, the hash function is collusion resistant.

Hash Fnc. from a Block Cipher

Compression fnc. from block cipher (Rabin):
- Split the message into *key blocks* (why not pt.?)
- Encrypt a constant (e.g. 0) with this seq. of keys.
- Ciphertext is the hash output.

Hash Fnc. from a Block Cipher (cont.)

Davies-Meyer Construction:
- \(H_i = H_{i-1} \oplus E_m(H_{i-1}) \)
- Compression function is provably secure (collision resistant) if \(E \) is a secure block cipher.
MD5

- Rivest, 1991
- Based on Davies-Meyer const.
- Very popular until recently.
 - 2004: First collision attacks
 - 2008: Practical collision attack; SSL cert. with same MD5 hash.
 - ~2010: Forged Microsoft MD5 certificates used in Flame malware
- Preimage resistance: Mostly ok.

64 rounds of:

Flame’s MS Windows MD5 Attack

- Chosen-prefix coll. attack: Meaningful initial blocks, followed by random blocks to obtain collision.

SHA-1

- Designed by NSA; based on Rivest’s MD4 & MD5 designs
- SHA 1993; SHA-1 1995
- 160-bit output size
- 2005: Some flaws discovered.
- SHA-2: 256- and 512-bit extension; secure
- SHA-3: By public competition

80 rounds of:

SHA-3

Public competition by NIST, similar to AES:
- NIST’s request for proposals (2007)
- 51 submissions (2008)
- 14 semi-finalists (2009)
- 5 finalists (2010)
- Winner: Keccak (2012)
 - Designed by Bertoni, Daemen, Peeters, Van Assche.
 - Based on “sponge construction”, a completely different structure.
Speed Comparisons

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Speed (MiByte/s.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES-128 / CTR</td>
<td>198</td>
</tr>
<tr>
<td>MD5</td>
<td>335</td>
</tr>
<tr>
<td>SHA-1</td>
<td>192</td>
</tr>
<tr>
<td>SHA-256</td>
<td>139</td>
</tr>
<tr>
<td>SHA-3</td>
<td>~ SHA-256</td>
</tr>
</tbody>
</table>

Crypto++ 5.6 benchmarks, 2.2 GHz AMD Opteron 8354

- NIST expects SHA-2 to be used for the foreseeable future.
- SHA-3: A companion algorithm with a different structure and properties.

Things to Do with a Hash Function

- Hash long messages for signing
- Stream ciphers
- Block ciphers
- MACs
- Authentication protocols
- ...

Stream Cipher

- **CFB:**
 \[O_i = H(K \ || \ C_{i-1}) \]
 \[C_i = P_i \oplus O_i \]
 \[P_i = G_i \oplus O_i \]

- **OFB:**
 \[O_i = H(K \ || \ O_{i-1}) \]
 \[C_i = P_i \oplus O_i \]
 \[P_i = G_i \oplus O_i \]

- **CTR:**
 \[C_i = P_i \oplus H(K \ || \ IV + i) \]
 \[P_i = C_i \oplus H(K \ || \ IV + i) \]

MACs from Hash Functions

A natural relative; but how to do it best?

- **prefix:** \(MAC_K(x) = H(K \ || \ x) \)
 - not secure; extension attack.
- **suffix:** \(MAC_K(x) = H(x \ || \ K) \)
 - mostly ok; problematic if \(H \) is not collision resistant.
- **envelope:** \(MAC_K(x) = H(K_1 \ || \ x \ || \ K_2) \)
- **HMAC:** \(MAC_K(x) = H(K_2 \ || \ H(K_1 \ || \ x)) \)
 - provably secure; popular in Internet standards.
VMAC

- Proposed by Ted Krovetz in 2006.
- Based on a universal hash rather than collision resistant hash. (which is fine for MAC)
- Extremely fast (3 GB/sec); adjustable security-speed tradeoff.
- VMAC-64 is about 10x faster than HMAC-MD5; has a security proof that \(\Pr(\text{forgery}) < 2^{-60} \).
- Very suitable for infrastructure (routers) or low-end (RFID, WSN) authentication.

Authentication Protocol

- Challenge-response authentication instead of a password protocol, with a shared secret K.
- Typically implemented with a block cipher.
- Possible with a hash function instead of block cipher:

\[
\begin{align*}
\text{Alice} & \quad \text{hello, } r_a \quad \text{Bob} \\
& \quad H(K \| r_a), r_b \\
& \quad H(K \| r_b)
\end{align*}
\]