Cryptographic Hash Functions

BİL 448/548 Internet Security Protocols Ali Aydın Selçuk

Cryptographic Hash Functions

- Maps an arbitrary length input to a fixed-size output.
- Was originally proposed to generate input to digital signatures.
- Desirable features:
 - one-way (preimage and second preimage resistant)
 - pseudorandom
 - collision resistant

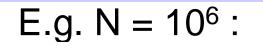
Pre-image & Collision Resistance

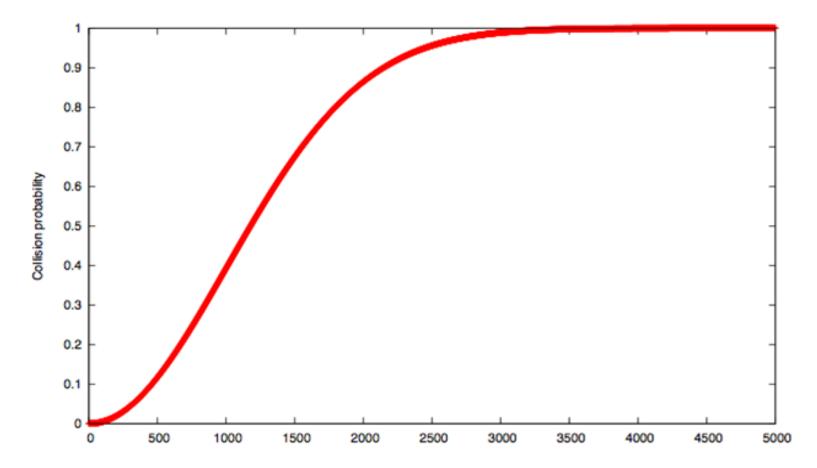
 Pre-image resistance: Given y, it should be hard to find M s.t.

 $\mathsf{H}(\mathsf{M})=\mathsf{y}.$

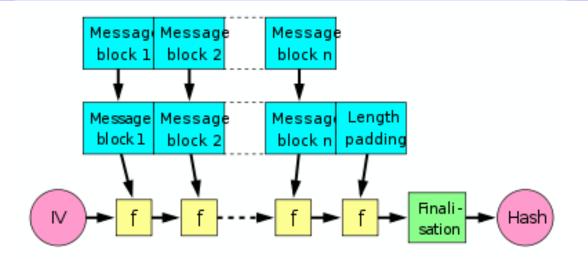
• Second pre-image (weak collision) resistance: Given M_1 , it should be hard to find $M_2 \neq M_1$, $H(M_2) = H(M_1)$.

(Why necessary?)


 (Strong) Collision resistance: It should be hard to find any M₁ ≠ M₂, H(M₁) = H(M₂).


(Why necessary?)

Collision Resistance


- But why "collision resistance"? (i.e., not just one-wayness?)
 - Assume a collision can be found (i.e., two messages with the same hash)
 - Alice generates two such messages and signs one of them. Later, she denies her signature and claims she in fact signed the other one.
- Birthday Problem ("paradox"): When √N or more are chosen randomly from a domain of N, there is a significant chance of collision.
- Hence, output size \geq 256 bits is desirable.

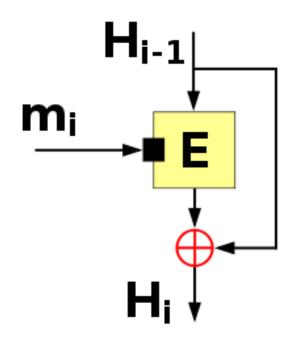
"Birthday Paradox"

Merkle-Damgard Construction

- Input is broken into equal-sized blocks and fed into the compression function.
- Length padding: 100...0 || (length of message). (Why?)
- Finalization: Optional
- Provable security: If f is collusion resistant, the hash function is collusion resistant.

Hash Fnc. from a Block Cipher

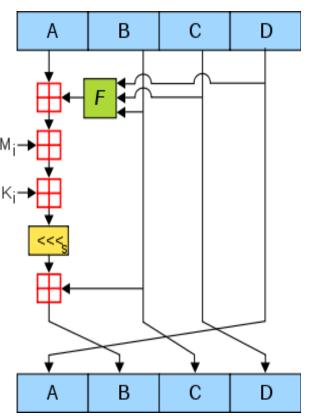
Compression fnc. from block cipher (Rabin):


- Split the message into key blocks. (why not pt.?)
- Encrypt a constant (e.g. 0) with this seq. of keys.
- Ciphertext is the hash output.

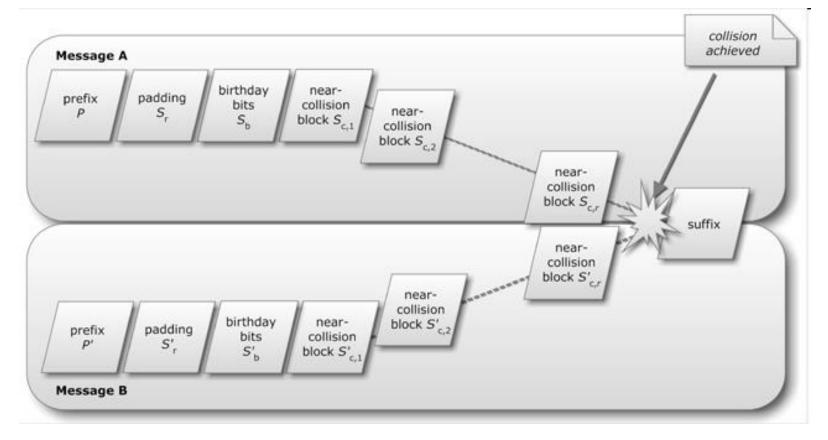
Hash Fnc. from a Block Cipher (cont.)

Davies-Meyer Construction:

•
$$H_i = H_{i-1} \oplus E_{mi}(H_{i-1})$$

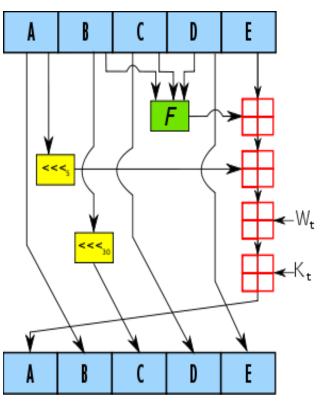

 Compression function is provably secure (collision resistant) if E is a secure block cipher.

MD5


- Rivest, 1991
- Based on Davies-Meyer const.
- Very popular until recently.
 - 2004: First collision attacks
 - 2008: Practical collision attack;
 SSL cert. with same MD5 hash.
 - ~2010: Forged Microsoft MD5 certificates used in Flame malware
- Preimage resistance: Mostly ok.

64 rounds of:

Flame's MS Windows MD5 Attack


• Chosen-prefix coll. attack: Meaningful initial blocks, followed by random blocks to obtain collision.

SHA-1

- Designed by NSA; based on Rivest's MD4 & MD5 designs
- SHA 1993; SHA-1 1995
- 160-bit output size
- 2005: Some flaws discovered.
- SHA-2: 256- and 512-bit extension; secure
- SHA-3: By public competition

80 rounds of:

SHA-3

Public competition by NIST, similar to AES:

- NIST's request for proposals (2007)
- 51 submissions (2008)
- 14 semi-finalists (2009)
- 5 finalists (2010)
- Winner: Keccak (2012)
 - Designed by Bertoni, <u>Daemen</u>, Peeters, Van Assche.
 - Based on "sponge construction", a completely different structure.

Speed Comparisons

Algorithm	Speed (MiByte/s.)
AES-128 / CTR	198
MD5	335
SHA-1	192
SHA-256	139
SHA-3	~ SHA-256

Crypto++ 5.6 benchmarks, 2.2 GHz AMD Opteron 8354

- NIST expects SHA-2 to be used for the foreseeable future.
- SHA-3: A companion algorithm with a different structure and properties.

Things to Do with a Hash Function

- Hash long messages for signing
- Stream ciphers
- Block ciphers
- MACs
- Authentication protocols
- . .

Stream Cipher

- CFB: $O_i = H(K || C_{i-1})$ $C_i = P_i \oplus O_i$ $P_i = C_i \oplus O_i$
- OFB: $O_i = H(K \parallel O_{i-1})$ $C_i = P_i \oplus O_i$ $P_i = C_i \oplus O_i$
- CTR: $C_i = P_i \oplus H(K \parallel IV + i)$ $P_i = C_i \oplus H(K \parallel IV + i)$

MACs from Hash Functions

A natural relative; but how to do it best?

• prefix: $MAC_{K}(x) = H(K || x)$

- not secure; extension attack.

- suffix: $MAC_{K}(x) = H(x || K)$
 - mostly ok; problematic if H is not collision resistant.
- envelope: $MAC_{K}(x) = H(K_{1} || x || K_{2})$
- HMAC: $MAC_{K}(x) = H(K_{2} || H(K_{1} || x))$

- provably secure; popular in Internet standards.

VMAC

- Proposed by Ted Krovetz in 2006.
- Based on a universal hash rather than collision resistant hash. (which is fine for MAC)
- Extremely fast (3 GB/sec); adjustable securityspeed tradeoff.
- VMAC-64 is about 10x faster than HMAC-MD5; has a security proof that Pr(forgery) < 2⁻⁶⁰.
- Very suitable for infrastructure (routers) or lowend (RFID, WSN) authentication.

Authentication Protocol

- Challenge-response authentication instead of a password protocol, with a shared secret K.
- Typically implemented with a block cipher.
- Possible with a hash function instead of block cipher:

Alice hello,
$$r_a$$
 Bob
 $H(K \parallel r_a), r_b$
 $H(K \parallel r_b)$