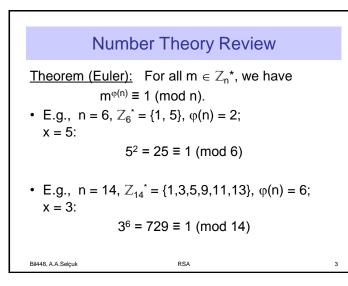
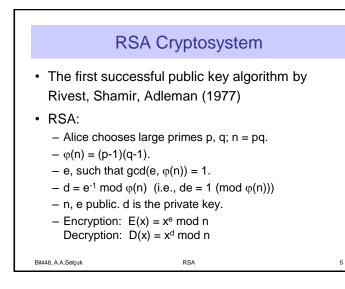
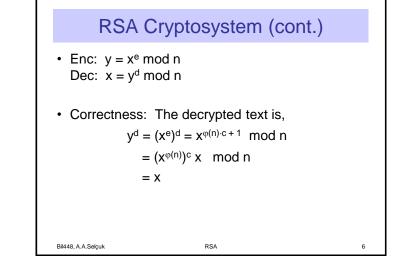


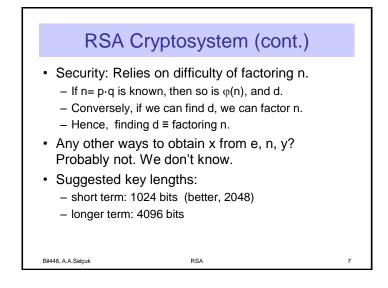
$\begin{array}{l} \textbf{Def:} \ \textbf{m,n} \in \textbf{Z} \ are \ \textit{relatively prime} \ if \ gcd(\textbf{m,n}) = 1. \\ \hline \textbf{Def:} \ \textbf{Z}_n^*: \ the numbers \ in \ \textbf{Z}_n \ relatively prime \ to \ n. \\ e.g., \ \textbf{Z}_6^* = \{1, 5\}, \ \textbf{Z}_7^* = \{1, 2, 3, 4, 5, 6\}. \\ \hline \textbf{Def:} \ \phi(\textbf{n}) = |\textbf{Z}_n^*|. \\ e.g., \ \phi(6) = 2, \ \phi(7) = 6. \\ \hline \textbf{BM8,A.Septime} \ \textbf{BM8,A.Septime} \ \textbf{Mathematical separate set} \ \textbf{Mathematical set} \ \textbf{Mathamatical set} \ \textbf{Matha$

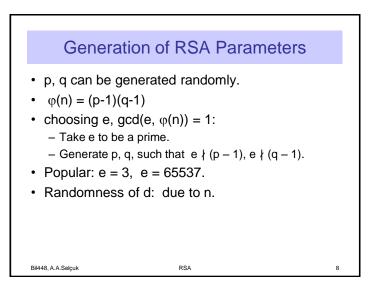


Number Theory Review Fact: If gcd(m,n) = d, then integers a, b exist s.t. $a \cdot m + b \cdot n = d$. $a \cdot m + b \cdot n = d$. E.g., m = 15, n = 24; gcd(15,24) = 3. $(-3) \cdot 15 + 2 \cdot 24 = 3$. Special case: If m, n are co-prime, $a \cdot m + b \cdot n = 1$. E.g., m=15, n=2: $(-1) \cdot 15 + 8 \cdot 2 = 1$. We say, $2^{-1} \pmod{15} = 8$. BM48, AA.Sepuk









• <u>Guessable plaintext problem</u>: If x comes from a small domain (PIN, password, etc.), given n, e, y, attacker can find x by trying:

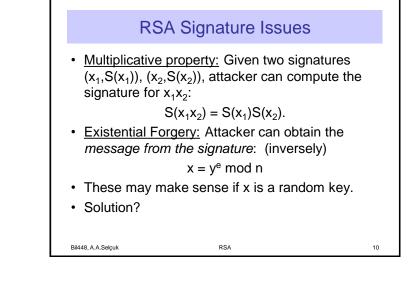
 $x^e \pmod{n} = y?$

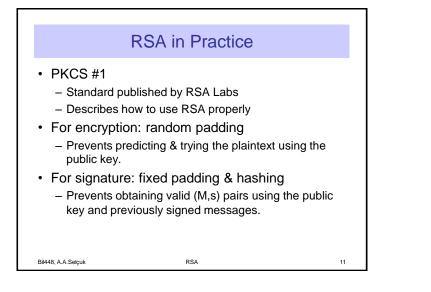
 <u>Issues with small e:</u> If e = 3, and x < n^{1/3}, then y = x³ (no modular reduction) and attacker can simply solve x from x³.
 (Imagine that x is a 128-bit AES key.)

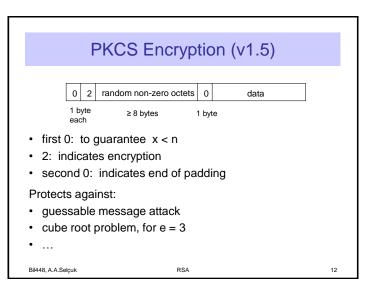
Bil448, A.A.Selçuk

RSA

9







PKCS Signa	ature (v1.5)	
0 1 octets of $(ff)_{16}$ 1 byte ≥ 8 bytes	0 hash type & hash 1 byte	
Why not random padding?Why include the hash type?		
Bił48, A.A.Selçuk RS	SA 13	

Speed Comparisons

(Crypto++ 5.6 benchmarks, 2.2 GHz AMD Opteron 8354.)

Algorithm	enc. time (ms/op.)	dec. time (ms/op.)
AES-128 (block)	0.00008	0.00008
RSA-1024	0.04	0.67
RSA-2048	0.08	2.90

- Public key operations are much slower than symmetric key operations.
- Typically, PKC is used for the initial session key exchange, and then the symmetric key is used for the rest of the session.

Bil448, A.A.Selçuk

RSA

14