

DSA (cont'd)		
- Let $q \mid (p-1)$ be prime, and $g \in \mathbb{Z}_p^*$ be of order q .		
• Schnorr group: The subgroup in \mathbb{Z}_p^* generated by g, of prime order q. <g> = {1, g, g²,, g^{q-1} }</g>		
• Fact: q can be much shorter than p (e.g. 160 vs. 1024 bits), and the hardness of DLP in <g> remains the same.</g>		

ElGamal Cryptosystem

8

ECC vs. RSA

NIST guidelines for key sizes (bits) with eqv. security levels: http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf

Symmetric Key	RSA/DH/EIGamal	ECC
80	1024	160
112	2048	224
128	3072	256
192	7680	384
256	15360	512

13

(according to our current knowledge of algorithms for factorization, DLP, and EC DLP)

Bil448, A.Selçuk E	Gamal Cryptosystem
--------------------	--------------------