ElGamal Cryptosystem
and variants

BİL 448/548
Internet Security Protocols
Ali Aydın Selçuk
Structure of \mathbb{Z}_p^*

For a prime p, \mathbb{Z}_p^* is all non-zero elements of \mathbb{Z}_p.

Fermat’s (Little) Theorem: For all $x \in \mathbb{Z}_p^*$, we have $x^{p-1} \equiv 1 \pmod{p}$.

Let $<g>$ denote the numbers generated by powers of g in \mathbb{Z}_p^*; $<g> = \{g, g^2, \ldots, g^{p-1}\}$.

E.g. for \mathbb{Z}_5^*:

- $<1> = \{1\}$
- $<2> = \{2, 4, 3, 1\}$
- $<3> = \{3, 4, 2, 1\}$
- $<4> = \{4, 1\}$

- “order” of 1 is one; of 4 is two; of 2 & 3 is four.
- 2 & 3 are “generators” of \mathbb{Z}_5^* (they have order $p-1$).
- **Fact:** For every prime p, \mathbb{Z}_p^* has a generator.
ElGamal – Encryption

Parameters:
- \(p \), a large prime
- \(g \), a generator of \(\mathbb{Z}_p^* \)
- \(\alpha \in \mathbb{Z}_{p-1}, \beta = g^\alpha \mod p \)
- \(p, g, \beta \) public; \(\alpha \) private

Encryption:
- generate random, secret \(k \in \mathbb{Z}_{p-1} \).
- \(E(x, k) = (r, s), \) where
 \(r = g^k \mod p \)
 \(s = x\beta^k \mod p \)
- \(D(r, s) = s(r^\alpha)^{-1} \mod p = xg^{ak}g^{-ak} \mod p = x. \)
ElGamal – Encryption

• Plaintext x is masked by a random factor, $g^{ak} \mod p$.
• DH problem: Given g^a, $g^k \mod p$, what is $g^{ak} \mod p$?
• p, g can be common. Then $g^k \mod p$ can be computed in advance.
• Same k should not be used repeatedly.
• Performance:
 – encryption: two exponentiations
 – decryption: one exponentiation, one inversion
• Size: Ciphertext twice as large as plaintext.
ElGamal – Signature

Parameters: The same as encryption.

Signature:
- generate random, secret \(k \in \mathbb{Z}_{p-1}^* \).
- \(S(m, k) = (r, s) \), where
 \[
 r = g^k \mod p
 \]
 \[
 s = (m - r\alpha)k^{-1} \mod (p - 1)
 \]
 (i.e., \(m = r\alpha + sk \))

Verification:
- Is \(\beta^r s \equiv g^m \pmod{p} \)?
- \(\beta^r s = g^{ar} g^{k(m - r\alpha)k^{-1}} = g^{ar} + (m - r\alpha) = g^m \mod p \).
ElGamal – Signature

Security:
- Only one who knows α can sign; can be verified by β.
- Solving α from β, or s from r, m, β, is discrete log.
- Other ways of forgery? Unknown.
- Same k should not be used repeatedly.

Variations:
- Many variants, by changing the “signing equation”,
 $m = r\alpha + sk$.
- E.g., the DSA way:
 $m = -r\alpha + sk$
 with verification: $\beta^m \equiv r^s \pmod{p}$? ($\equiv g^{m + r\alpha}$)
Digital Signature Algorithm (DSA)

- US government standard, designed by NSA.
- Based on ElGamal & Schnorr:
 - patent-free (ElGamal)
 - can’t be used for encryption
- Objections:
 - ElGamal was not analyzed as much as RSA
 - slower verification
 - industry had already invested in RSA
 - closed-door design
• Let $q \mid (p-1)$ be prime, and $g \in \mathbb{Z}_p^*$ be of order q.

• Schnorr group: The subgroup in \mathbb{Z}_p^* generated by g, of prime order q.

$$<g> = \{1, g, g^2, \ldots, g^{q-1}\}$$

• **Fact:** q can be much shorter than p (e.g. 160 vs. 1024 bits), and the hardness of DLP in $<g>$ remains the same.
DSA (cont’d)

Parameters: prime p, prime q | (p-1), and \(g \in \mathbb{Z}_p^* \) of order q. Hash fnc. H: \{0,1\}* \(\rightarrow \mathbb{Z}_q \).

Keys: \(\alpha \in \mathbb{Z}_q \) is private; \(\beta = (g^\alpha \mod p) \) is public.

Signature: \((r,s)\) where

- \(v = g^k \mod p \)
- \(r = v \mod q \)
- \(s = (H(M) + r \alpha) k^{-1} \mod q \)

Verification:

- \(v' = g^{H(M) s^{-1}} \beta^r s^{-1} \mod p \)
- \(r = v' \mod q ? \)

Advantage: Reduced size \((r, s \text{ are } 160\text{-bit})\)
Elliptic Curve Cryptosystems

Generalized Discrete Log Problem:
- For any group \((G, \cdot)\), for \(x \in G\), define
 \[x^n = x \cdot x \cdot ... \cdot x\] (n times)
- DLP: For \(y = x^n\), given \(x, y\), what is \(n\)?

Elliptic curves over \(\mathbb{Z}_p\):
- Set of points \((x, y) \in \mathbb{Z}_p \times \mathbb{Z}_p\) that satisfy
 \[y^2 \equiv x^3 + ax + b \pmod{p}\]
 and an additional point of infinity, 0.
- Group operation: \(P \cdot Q\) is the inverse of where the line thru \(P\) & \(Q\) intersects the curve. (inverse of \(P = (x, y)\) is defined as \(P^{-1} = (x, -y)\).)
- Well-defined, provided that \(4a^3 \neq -27b^2 \pmod{p}\).
Elliptic Curve Cryptosystems (cont’d)

EC example over R^2:

\[y^2 = x^3 - 7x \]

- \(P (-2.35, -1.86) \)
- \(Q (-0.1, 0.836) \)
- \(-R (3.89, 5.62) \)
- \(R (3.89, -5.62) \)

\[P + Q = R = (3.89, -5.62). \]
Elliptic Curve Cryptosystems (cont’d)

- Facts for an EC over a finite field:
 - Exponentiation is efficient.
 - DLP is hard. In fact, harder than in \mathbb{Z}_p. (no sub-exponential algorithm is known)

- Hence, DH, ElGamal, etc. can be used with smaller key sizes over ECs. (160-bit EC ~ 1024-bit RSA)

- Popular for constrained devices (e.g., smart cards)

- Advantages over RSA:
 - smaller key size
 - compact in hardware
 - faster (for private key operations)

- Licensed by NSA.
ECC vs. RSA

<table>
<thead>
<tr>
<th>Symmetric Key</th>
<th>RSA/DH/ElGamal</th>
<th>ECC</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>1024</td>
<td>160</td>
</tr>
<tr>
<td>112</td>
<td>2048</td>
<td>224</td>
</tr>
<tr>
<td>128</td>
<td>3072</td>
<td>256</td>
</tr>
<tr>
<td>192</td>
<td>7680</td>
<td>384</td>
</tr>
<tr>
<td>256</td>
<td>15360</td>
<td>512</td>
</tr>
</tbody>
</table>

(according to our current knowledge of algorithms for factorization, DLP, and EC DLP)