ElGamal Cryptosystem and variants

BİL 448/548 Internet Security Protocols Ali Aydın Selçuk

Structure of \mathbb{Z}_{p}^{*}

For a prime p, \mathbb{Z}_p^* is all non-zero elements of \mathbb{Z}_p . <u>Fermat's (Little) Theorem</u>: For all $x \in \mathbb{Z}_p^*$, we have $x^{p-1} \equiv 1 \pmod{p}$.

Let <g> denote the numbers generated by powers of g in \mathbb{Z}_{p}^{*} ; <g> = {g, g²,..., g^{p-1}}. E.g. for \mathbb{Z}_{5}^{*} : <1> = {1} <2> = {2,4,3,1} <3> = {3,4,2,1} <4> = {4,1}

- "order" of 1 is one; of 4 is two; of 2 & 3 is four.
- 2 & 3 are "generators" of \mathbb{Z}_5^* (they have order p-1).
- <u>Fact:</u> For every prime p, \mathbb{Z}_{p}^{*} has a generator.

ElGamal – Encryption

Parameters:

- p, a large prime
- g, a generator of \mathbb{Z}_{p}^{*}
- $\alpha \in \mathbb{Z}_{p-1}$, $\beta = g^{\alpha} \mod p$
- p, g, β public; α private

Encryption:

– generate random, secret $k \in \mathbb{Z}_{p-1}$.

-
$$E(x, k) = (r, s)$$
, where
 $r = g^k \mod p$
 $s = x\beta^k \mod p$

 $- D(r, s) = s(r^{\alpha})^{-1} \mod p = xg^{\alpha k}g^{-\alpha k} \mod p = x.$

EIGamal – Encryption

- Plaintext x is masked by a random factor, $g^{\alpha k}$ mod p.
- DH problem: Given g^{α} , g^{k} mod p, what is $g^{\alpha k}$ mod p?
- p, g can be common. Then g^k mod p can be computed in advance.
- Same k should not be used repeatedly.
- Performance:
 - encryption: two exponentiations
 - decryption: one exponentiation, one inversion
- Size: Ciphertext twice as large as plaintext.

ElGamal – Signature

Parameters: The same as encryption.

Signature:

– generate random, secret $k \in \mathbb{Z}_{p-1}^{*}$.

- S(m, k) = (r, s), where

$$r = g^k \mod p$$

 $s = (m - r\alpha)k^{-1} \mod (p - 1)$
(i.e., m = r α + sk)

Verification:

- Is
$$\beta^{r}r^{s} \equiv g^{m} \pmod{p}$$
?
- $\beta^{r}r^{s} = g^{\alpha r}g^{k(m - r\alpha)k^{(-1)}} = g^{\alpha r + (m - r\alpha)} = g^{m} \mod{p}$

ElGamal – Signature

Security:

- Only one who knows α can sign; can be verified by β .
- Solving α from β , or s from r, m, β , is discrete log.
- Other ways of forgery? Unknown.
- Same k should not be used repeatedly.

Variations:

- Many variants, by changing the "signing equation", m = $r\alpha$ + sk.

```
- E.g., the DSA way:
m = -r\alpha + sk
```

with verification: $\beta^r g^m \equiv r^s \pmod{p}$? ($\equiv g^{m + r\alpha}$)

Digital Signature Algorithm (DSA)

- US government standard, designed by NSA.
- Based on ElGamal & Schnorr:
 - patent-free (ElGamal)
 - can't be used for encryption
- Objections:
 - ElGamal was not analyzed as much as RSA
 - slower verification
 - industry had already invested in RSA
 - closed-door design

DSA (cont'd)

- Let $q \mid (p-1)$ be prime, and $g \in \mathbb{Z}_p^*$ be of order q.
- Schnorr group: The subgroup in \mathbb{Z}_p^* generated by g, of prime order q.

$$\langle g \rangle = \{1, g, g^2, ..., g^{q-1}\}$$

Fact: q can be much shorter than p (e.g. 160 vs. 1024 bits), and the hardness of DLP in <g> remains the same.

DSA (cont'd)

<u>Parameters:</u> prime p, prime q | (p-1), and $g \in \mathbb{Z}_{p}^{*}$ of order q. Hash fnc. H: {0,1}* $\rightarrow \mathbb{Z}_{q}$.

<u>Keys:</u> $\alpha \in \mathbb{Z}_q$ is private; $\beta = (g^{\alpha} \mod p)$ is public.

Signature: (r,s) where

$$-v = g^k \mod p$$

- $r = v \mod q$
- $-s = (H(M) + r \alpha) k^{-1} \mod q$

Verification:

$$- v' = g^{H(M) s^{-1}} \beta^{r s^{-1}} \mod p$$

- r = v' mod q ?

Elliptic Curve Cryptosystems

Generalized Discrete Log Problem:

- For any group (G, •), for $x \in G$, define $x^n = x \bullet x \bullet \dots \bullet x$ (n times)

- DLP: For $y = x^n$, given x, y, what is n?

Elliptic curves over \mathbb{Z}_p :

- Set of points $(x, y) \in \mathbb{Z}_p x \mathbb{Z}_p$ that satisfy $y^2 \equiv x^3 + ax + b \pmod{p}$ and an additional point of infinity, 0.

 Group operation: P•Q is the inverse of where the line thru P & Q intersects the curve. (inverse of P = (x, y) is defined as P⁻¹ = (x, -y).)

- Well-defined, provided that $4a^3 \neq -27b^2 \pmod{p}$.

Elliptic Curve Cryptosystems (cont'd)

EC example over R²:

Elliptic Curve Cryptosystems (cont'd)

- Facts for an EC over a finite field:
 - Exponentiation is efficient.
 - DLP is hard. In fact, harder than in \mathbb{Z}_p . (no sub-exponential algorithm is known)
- Hence, DH, ElGamal, etc. can be used with smaller key sizes over ECs. (160-bit EC ~ 1024-bit RSA)
- Popular for constrained devices (e.g., smart cards)
- Advantages over RSA:
 - smaller key size
 - compact in hardware
 - faster (for private key operations)
- Licensed by NSA.

ECC vs. RSA

NIST guidelines for key sizes (bits) with eqv. security levels: http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57_part1_rev3_general.pdf

Symmetric Key	RSA/DH/EIGamal	ECC
80	1024	160
112	2048	224
128	3072	256
192	7680	384
256	15360	512

(according to our current knowledge of algorithms for factorization, DLP, and EC DLP)