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Structure of Zp*

For a prime p, Z,* Is all non-zero elements of Z,,.
Fermat’s (Little) Theorem: For all x € Z;*, we have
xP-1 =1 (mod p).
Let <g> denote the numbers generated by powers of g in
Zo% <9>={9, ¢%..., g1},
E.g. for Z:*:
<1>={1} <2>={2,4,3,1}
<3>={3,4,2,1} <4>={4,1}
« “order” of 1is one; of 4 is two; of 2 & 3 is four.
« 2 & 3 are “generators” of Z:.* (they have order p-1).
* Fact: For every prime p, Z,* has a generator.
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ElGamal — Encryption

Parameters:

— p, alarge prime

— 0, agenerator of Z;

—aeZyy, p=g*modp

— p, 9, B public; a private
Encryption:

— generate random, secret k € 7 ;.

— E(X, k) = (r, s), where
r=g<mod p
s = xp¥mod p
— D(r, s) = s(r%)* mod p = xg%*g<k mod p = x.
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ElGamal — Encryption

« Plaintext x is masked by a random factor, g° mod p.
« DH problem: Given g%, gk mod p, what is ge mod p?

* p, g can be common. Then gk mod p can be computed in
advance.

« Same k should not be used repeatedly.
* Performance:

— encryption: two exponentiations

— decryption: one exponentiation, one inversion
« Size: Ciphertext twice as large as plaintext.

Bil448, A.Selguk ElGamal Cryptosystem 4



ElGamal — Signature

Parameters: The same as encryption.

Signature:
— generate random, secret k e Z ;.

— S(m, k) = (r, s), where
r=gkmod p
s=(m-ra)kimod (p-1)
(i.,e., m=ra+sk)
Verification:
— Is B'rs = g™ (mod p) ?
_ Brrs — gargk(m — ra)k(-1) = gor* (m-ra) = g™ mod P.
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ElGamal — Signature

Security:
— Only one who knows a can sign; can be verified by (3.
— Solving a from (3, or s fromr, m, 3, is discrete log.
— Other ways of forgery? Unknown.
— Same k should not be used repeatedly.

Variations:
— Many variants, by changing the “signing equation”,
m = ra + sk.
— E.g., the DSA way:
m = —ra + sk
with verification: B'g™ =rs (mod p)? (= gm*")

Bil448, A.Selguk ElGamal Cryptosystem



Digital Signature Algorithm (DSA)

« US government standard, designed by NSA.

« Based on ElGamal & Schnorr:
— patent-free (ElGamal)
— can’t be used for encryption
* Objections:
— ElGamal was not analyzed as much as RSA
— slower verification
— Industry had already invested in RSA
— closed-door design
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DSA (cont'd)

* Let g (p-1) be prime, and g € Z,;" be of order q.

- Schnorr group: The subgroup in Z," generated
by g, of prime order Q.

<g>={1,0,0% ...,9%}

« Fact: g can be much shorter than p (e.g. 160
vs. 1024 bits), and the hardness of DLP in <g>
remains the same.
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DSA (cont'd)

Parameters: prime p, prime g | (p-1), and g € Z,

of order . Hash fnc. H: {0,1}* —» Z,.
Keys: a € Z, Is private; 3 = (g® mod p) Is public.
Signature: (r,s) where

—v=g<modp

—r=vmodq

—s=(H(M) +ra) ktmodq
Verification:

—V = gH(M) sM(-1) Br s™(-1) mod P

—r=v.modq"?

Advantage: Reduced size (r, s are 160-bit)
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Elliptic Curve Cryptosystems

Generalized Discrete Log Problem:
— For any group (G, °), for x € G, define
XT=XeXe..*X (ntimes)
— DLP: Fory = x", given X, y, what is n?
Elliptic curves over Z;:

— Set of points (x, y) € Z, x Z, that satisfy
y>=x3+ax+b (mod p)
and an additional point of infinity, O.

— Group operation: P+<Q is the inverse of where the line
thru P & Q intersects the curve. (inverse of P = (X, y)
Is defined as P = (x, -y).)

— Well-defined, provided that 4a3 = -27b? (mod p).
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Elliptic Curve Cryptosystems (cont'd)

EC example over R?:
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2 o=x¥-Tx
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P (-2.35,-186)
O (-0.1, 0.836)
-R (3.89,5.62)
R (3.89,-5.62)

P+O=R=(389,-562).
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Elliptic Curve Cryptosystems (cont'd)

 Facts for an EC over a finite field:

— EXxponentiation is efficient.

— DLP is hard. In fact, harder than in Z,. (no sub-exponential
algorithm is known)

 Hence, DH, ElGamal, etc. can be used with smaller key
sizes over ECs. (160-bit EC ~ 1024-bit RSA)

« Popular for constrained devices (e.g., smart cards)

« Advantages over RSA:
— smaller key size
— compact in hardware
— faster (for private key operations)

Licensed by NSA.
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ECC vs. RSA

NIST guidelines for key sizes (bits) with eqv. security levels:

http://csrc.nist.qgov/publications/nistpubs/800-57/sp800-

57 partl rev3 general.pdf

Symmetric Key RSA/DH/ElGamal ECC
80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 512

(according to our current knowledge of algorithms for

factorization, DLP, and EC DLP)
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