Key Distribution

BİL 448/548 Internet Security Protocols Ali Aydın Selçuk

Public Key Cryptography

- Simple PKC solves key dist. problem against passive attackers (i.e., an attacker that just eavesdrops).
- Active attackers can send a fake public key & become a "man in the middle" (MitM).

Notation:

- $\{M\}_X$: message M enc. with the pub. key of X
- $[M]_X$: message M signed with the prv. key of X

Key Distribution

MitM Attack against RSA

MitM Attack against DH

Normal op:

MitM attack:

Trusted Third Parties

- Solution against active attackers: "Trusted Third Parties" (TTPs)
- Symmetric key solution: KDC
 - Everyone registers with the KDC, shares a secret key.
 - When A & B want to communicate, they contact the KDC & obtain a session key.
- Public key solution: CA
 - Everyone registers with the CA, obtains a "certificate" for his/her public key.
 - Certificate: A document signed by the CA, including the ID and the public key of the subject.
 - People obtain each other's certificates thru a repository, a webpage, or at the beginning of the protocol,
 - and use the certified public keys in the protocols.

KDC vs. CA

- KDC
 - faster (being based on symmetric keys)
 - has to be online
- CA
 - doesn't have to be online
 - if crashes, doesn't disable the network
 - much simpler
 - scales better
 - certificates are not disclosure-sensitive
 - a compromised CA can't decrypt conversations
- KDCs are preferred for LANs, CAs for WANs (e.g., the Internet).

Key Distribution with KDC

A simple protocol:

 K_A , K_B : Long-term secret keys of Alice, Bob. K_A {m}: Encryption of m with K_A .

Better ways of doing it:

- Needham-Schroeder protocol
- "Kerberos"

Key Distribution with CA

A simple protocol:

- certificates are obtained in advance
- session key is transported with public key encryption
- ~ SSL key exchange:

k is the session key

DH with Certificates

- STS Protocol: Authenticated DH protocol; basis for many real-life app's.
- Certified PKs are used for signing the public DH parameters. A slightly simplified version:

where $x = g^a \mod p$, $y = g^b \mod p$, $k = g^{ab} \mod p$.

• Feature: "Perfect forward secrecy"