Key Distribution

BİL 448/548
Internet Security Protocols
Ali Aydın Selçuk
Public Key Cryptography

- Simple PKC solves key dist. problem against passive attackers (i.e., an attacker that just eavesdrops).
- Active attackers can send a fake public key & become a “man in the middle” (MitM).

Notation:
- \(\{M\}_X\) : message M enc. with the pub. key of X
- \([M]_X\) : message M signed with the prv. key of X
MitM Attack against RSA

Normal op:

Alice \xrightarrow{\text{pub key } K_A} Bob

\{k\}_A \leftarrow \text{k is the session key}

MitM attack:

Alice \xrightarrow{K_A} Trudy \xleftarrow{K_{A'}} Bob

\{k\}_A \leftrightarrow \{k\}_{A'}

key k \leftrightarrow key k
MitM Attack against DH

Normal op:

\[
\begin{align*}
\text{Alice} & \quad g^a \mod p & \quad \text{Bob} \\
& \quad \overleftrightarrow{g^b \mod p} \\
& \quad K = g^{ab} \mod p
\end{align*}
\]

MitM attack:

\[
\begin{align*}
\text{Alice} & \quad g^a \mod p & \quad g^a' \mod p & \quad \text{Bob} \\
& \quad \overleftrightarrow{g^{b'} \mod p} & \quad g^b \mod p \\
& \quad K' = g^{ab'} \mod p & \quad K'' = g^{a'b} \mod p
\end{align*}
\]
Trusted Third Parties

- Solution against active attackers: “ Trusted Third Parties” (TTPs)
- Symmetric key solution: KDC
 - Everyone registers with the KDC, shares a secret key.
 - When A & B want to communicate, they contact the KDC & obtain a session key.
- Public key solution: CA
 - Everyone registers with the CA, obtains a “certificate” for his/her public key.
 - Certificate: A document signed by the CA, including the ID and the public key of the subject.
 - People obtain each other’s certificates thru a repository, a webpage, or at the beginning of the protocol,
 - and use the certified public keys in the protocols.
KDC vs. CA

- **KDC**
 - faster (being based on symmetric keys)
 - has to be online
- **CA**
 - doesn’t have to be online
 - if crashes, doesn’t disable the network
 - much simpler
 - scales better
 - certificates are not disclosure-sensitive
 - a compromised CA can’t decrypt conversations

- KDCs are preferred for LANs, CAs for WANs (e.g., the Internet).
Key Distribution with KDC

A simple protocol:

\[K_A, K_B: \text{Long-term secret keys of Alice, Bob.} \]
\[K_A\{m\}: \text{Encryption of} \ m \text{with} \ K_A. \]

Better ways of doing it:
• Needham-Schroeder protocol
• “Kerberos”
A simple protocol:

- certificates are obtained in advance
- session key is transported with public key encryption

~ SSL key exchange:

\[cert_S = [ID_S, PK_S, \ldots]_{CA} \]

\[\{k\}_S \]

k is the session key
DH with Certificates

- STS Protocol: Authenticated DH protocol; basis for many real-life app’s.
- Certified PKs are used for signing the public DH parameters. A slightly simplified version:

\[x = g^a \mod p, \quad y = g^b \mod p, \quad k = g^{ab} \mod p. \]

- Feature: “Perfect forward secrecy”