Trust Infrastructure of SSL

SSL/TLS

• The main workhorse of secure Internet communication.

• Everyday, billions of web packets (HTTPS) are encrypted by SSL/TLS.

• Not only web pages: VPN tunneling, electronic banking, cloud services, … all rely on SSL to secure their communications.

Success of SSL

• Brought cryptography to the service of the masses

• Until SSL and spread of Internet, cryptography saw very limited use by common people.

• In the first 20 years of PKC (1976-96), the technology had a very limited penetration.

• This all changed in the second half of the 1990s with SSL.

Success of SSL

• Trust infrastructure has an autonomous and self-governing structure, consisting of
 – browser / OS vendors
 – audit firms and standards bodies
 – certificate authorities
 – SSL servers

• Has been remarkably successful, especially compared to previous efforts such as PEM to secure Internet communications.
A Simple Key Exchange Protocol

~ SSL key exchange protocol:

```
client                             server
hello

pub key Ks

[k]s

k is the session key
```

Active Attacks & Certificates

- Simple public key encryption solves the key distribution problem against passive attackers (i.e., an attacker that just eavesdrops).
- Active attackers can send a fake public key & become a “man in the middle” (MitM).

Notation:
- [M]x: message M signed with the prv. key of X
- {M}x: message M enc. with the pub. key of X

MitM Attack

Normal op:

```
Alice                      pub key KA

[k]A

k is the session key
```

MitM attack:

```
Alice                      Trudy

KA

[k]A

key k

Bob                      Trudy

KA'

[k]A'

key k

Bob
```

Certificates

- These MitM attacks are possible because a receiver cannot distinguish a fake public key from the real one.
- Certificates: IDs and public keys are signed by a trusted authority (“certification authority”).
- E.g., certA = [IDA, PKA, exp.date, …]CA
Certified Encrypted Key Exchange

~ SSL key exchange protocol:

client → hello

server ← cert_S = [ID_S, PK_S, ...]_CA

(k)_S

k is the session key

Certification Authorities

• CAs’ public key should be distributed in a trusted way to all the parties in the system in advance.

• In SSL, root CAs are approved by the browser (or the OS) makers, and distributed with the browser/OS code.

• CAs must satisfy certain criteria for this:

Certification Authorities

• Browser makers require CA firms to be audited and accredited according to some standards:
 – WebTrust
 – ETSI TS 101/102
 – ISO 21188:2006

• Public key infrastructure of SSL:
 – Oligarchy model: A number of trusted root CAs,
 – which issue certificates to intermediate CAs, or to end users (SSL servers)

Example: IE Browser

• Tools > Internet options > Content > Certificates
Example: IE Browser

- **Trusted root CAs:**

![Certificate Management](image1.png)

Example: IE Browser

- **E.g., VeriSign root certificate:**

![Certificate Details](image2.png)

Example: IE Browser

- **Untrusted / revoked certificates:**

![Certificate Management](image3.png)

Certificates & Validation

- Valid SSL/TLS certificates are issued to web servers by root or intermediate CAs.
 - E.g., Google’s certificate: GeoTrust (root) → Google Internet Authority → accounts.google.com
- Client (browser) authenticates this chain of certificates beginning from the root CA.
Example Client Certificate

- E.g., gmail.com (or, accounts.google.com)

Example Client Certificate

- E.g., gmail.com (or, accounts.google.com)

Example Client Certificate

- Example Client Certificate

SSL/TLS in Practice

SSL/TLS:
- A reasonably secure protocol
- with a reasonable trust model
- and commercially viable operation

What may go wrong?
- “Man in the browser” attacks
- Cert. validation software may get it wrong
- Compromised CAs, fake certificates
- and more…