E-mail Security

BİL 448/548
Internet Security Protocols
Ali Aydı̇n Selçuk
Security Services for E-mail

- privacy
- authentication
- integrity
- non-repudiation
- anonymity
- proof of submission
- proof of delivery
- message flow confidentiality, etc.
Key Management

• A per-message symmetric key is used for message encryption,
• which is conveyed in the mail, encrypted under a long-term key (typically a public key)
• Long-term keys can be established,
 – offline
 – online, with help from a trusted third party
 – online, through a webpage (for public keys)
Multiple Recipients

- Message key will be encrypted under each recipients long term key in the message header.
 - Bob’s ID, $K_{Bob}\{S\}$
 - Carol’s ID, $K_{Carol}\{S\}$
 - Ted’s ID, $K_{Ted}\{S\}$
 - $S\{m\}$

- E.g.:

 To: Bob, Carol, Ted
 From: Alice
 Key-info: Bob-4276724736874376
 Key-info: Carol-78657438676783457
 Key-info: Ted-12873486743009
 Msg-info: UHGuiy77t65fhj87oi.....
Text Format Issues

• Mail gateways/forwarders may modify the format of the message (wrapping long lines, end-of-line character, high order bits, etc.), causing the integrity check to fail

• Encode messages in a format supported by all mailers; 6-bit representation, no long lines, etc. (Base64 encoding). (*)

Text Format Issues (cont’d)

• Problem: Authentication-only (not encrypted) mails should be readable by non-supportive clients.

• Two options:
 – Sign without encoding (*)
 (subject to corruption by mail routers)
 – Encode & sign
 (may not be readable at the other end)

(*) First option is popular.
Privacy Enhanced Mail (PEM)
- Developed by IETF, to add encryption, source authentication & integrity protection to e-mail
- Allows both public & secret long-term keys
 Message key is always symmetric
- Specifies a detailed certification hierarchy

Secure/MIME (S/MIME)
- PEM never took off; CA hierarchy difficult to realize
- S/MIME: PEM design incorporated into MIME
PEM Key Exchange & Encryption

• “Interchange keys”: Users’ long-term PEM keys
 – public (a detailed PKI is defined)
 – secret (pre-shared symmetric keys)

• Encryption
 – A symmetric per-message key is sent encrypted under the interchange key.
 – The message is encrypted under the per-message key (typically with DES in CBC mode)

• Authentication
 – Message is authenticated by a “MIC”
 (Q: Any authentication for the per-message key?)
PEM Certificate Hierarchy

- The root CA: “Internet Policy Registration Authority” (IPRA)
- “Policy Certification Authorities”: Second-level, CA-certifying CAs, each with a different policy:
 - High Assurance (HA): super-secure
 - implemented on secure platforms
 - regulates that the child CAs (also HACAs) enforce the same rules
 - Discretionary Assurance (DA): secure
 - requires that the child CAs own their names
 - No Assurance (NA): no constraints
 - can be used to certify Internet personas (pseudonyms)
- Lower-level CAs, certifying individuals or other CAs
S/MIME vs. PEM

- Incorporated into MIME; no other encoding
- Any sequence of sign & encrypt is supported (each as a recursive MIME encapsulation)
- Has more options than PEM
- ASN.1 header encoding
- No prescribed certification hierarchy
- Has a good prospect of deployment for commercial & organizational usage
Pretty Good Privacy (PGP)

- Popular mail & file encryption tool
- Developed by Phil Zimmermann, 1991
- Originally based on RSA, IDEA, MD5 (later DSS, ElGamal, 3DES, AES, SHA1)
- Many different versions have emerged (from PGP, from GNU (GPG), from IETF (Open PGP))
PGP Operation

- All long-term user keys are public
- Signature:
 - Message & timestamp are hashed (MD5 or SHA1) and signed (RSA or DSS)
- Compression before encryption (ZIP)
- Encryption:
 - Message is encrypted with a per-message symmetric key; typically in CFB mode. (Why?)
 - That key is encrypted with the recipient’s public key (RSA or DH (ElGamal)).
- Base64 (6-bit) encoding
PGP Trust Model & Key Management

• Any user can certify any other (anarchy model)
• Each user decides whom to trust and how much
• “Key Ring”: Data structure to store public keys held by a user, with their levels of trust
• Public keys can be obtained,
 – offline (in person, over the phone, etc.)
 – through personal webpages
 – through a trusted friend (“web of trust”)
 – through a trusted repository (e.g., keyserver.pgp.com)
DKIM – Domain Keys Identified Mail

• An effort to stop spam with forged domain addresses (e.g. phishing attacks).

• Standardized by RFC 4871; supported by Yahoo, Gmail, FastMail etc.

• Each domain has an email signature key. Public keys will be retrieved over DNS.

• If signature verification fails, mail will be dropped.
• Once deployed, it will significantly limit phishing attacks with forged domain addresses.

• Deployment is increasing rapidly.

• Example: Gmail’s collaboration with PayPal & eBay