The Internet

BİL 448/548 Internet Security Protocols Ali Aydın Selçuk

Bil448, A.A.Selçuk

The Internet

The Internet

A packet-switched network:

- · Data to be transmitted is divided into "packets"
- Each packet is forwarded by "routers" towards the destination

Bil448, A.A.Selçuk

TCP/IP Reference Model

Application Layer (HTTP, FTP, SMTP, etc.)

Transport Layer (TCP, UDP)

Network Layer (IP)

Data Link Layer (PPP, Ethernet, etc.)

Physical Layer

- IP: delivery of packets to the destination
- TCP: reliability of the communication
- UDP: basic transport protocol

Bil448, A.A.Selçuk

The Internet

Network Layer

The Internet

- · Main protocol: IP
- Like the postal service: Forwards the packet hop by hop towards the destination address, and delivers it to the destination.
- "Best effort delivery"
- · Some important fields in the header:
 - source address
 - destination address

Bil448, A.A.Selçuk

The Internet

Bil448, A.A.Selçuk The Internet **TCP** Header $\begin{smallmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 \end{smallmatrix}$ | Source Port | Destination Port Sequence Number Acknowledgment Number | Offset| Reserved |R|C|S|S|Y|I| | Checksum | Urgent Pointer | Options | Padding | data

The Internet

Bil448, A.A.Selçuk

Transport Layer

- Main protocol: TCP (also UDP)
- Provides reliability on top of unreliable IP (~ a circuit switched network)
 - ordering of packets
 - detection & retransmission of lost / erroneous packets
 - congestion control
- · Some important fields in the header:
 - source port, destination port
 - sequence number
 - checksum

Bil448, A.A.Selçuk The Internet

UDP Header

0 1 2 3 4 5 6 7 8 9 0 1 2

Bil448, A.A.Selçuk The Internet 8

Securing Internet Communication

- Encrypting / authenticating the traffic
 - SSL / TLS
 - IPsec
- · Application layer security
 - E-mail (PGP, S/MIME, etc.)
 - SSH
 - _ ...
- · Securing the infrastructure
 - DNSSEC
 - Routing security

Bil448, A.A.Selçuk

The Internet

Securing TCP/IP

Layer 3:

- can secure all IP comm., transparent to applications
- must be built into the OS

Layer 4:

- doesn't require OS modification; deployment easy

Bil448, A.A.Selçuk The Internet

Encrypting the Traffic

SSL:

- Runs on top of TCP
- Encrypts traffic of a TCP connection (e.g., a web page)

IPsec:

- Runs on top of IP
- Encrypts all the traffic between two IPsec hosts
- In tunnel mode, it encrypts all the traffic between two gateways (i.e., two subnets)

Bil448, A.A.Selçuk

The Internet

11

IPsec vs. SSL

Basic TCP/IP packet:

IP hdr TCP hdr application hdr & data

10

12

SSL:

IP hdr TCP hdr SSL hdr application hdr & data

IPsec – transport mode:

IP hdr | IPsec hdr | TCP hdr | application hdr & data

IPsec – tunnel mode:

ext. IP hdr | IPsec hdr | IP hdr | TCP hdr | application hdr & data

Bil448, A.A.Selçuk

The Internet

3

Securing the Internet Infrastructure

- Many critical Internet infrastructure protocols have no security protection.
- · Messages are just assumed to be authentic.
- · Critical examples:
 - DNS
 - Routing protocols

Bil448, A.A.Selçuk

The Internet

. .

Routing Protocols

- Responsible to compute the route between each source and destination on the Internet.
- · internal: OSPF
 - Within an administrative domain (AS), every router broadcasts its link information to peers
 - Each router computes the shortest paths within AS
- external: BGP
 - Each AS shares its distance table with its neighbors
 - "Next hop" information is updated accordingly
- · Routing updates are assumed authentic implicitly.

Bil448, A.A.Selçuk The Internet 15

Domain Name System

- DNS makes it possible to use human-friendly hostnames instead of IP addresses.
- Responsible to translate hostnames to IP addresses (www.example.com → 192.0.43.10) for using it in TCP/IP.
- · A critical part of the Internet infrastructure
- DNS responses are assumed to be authentic implicitly by applications and protocols.

Bil448, A.A.Selçuk

The Internet

Cryptography & Internet

- · Not an easy relationship
- The structure is not designed with security in mind; it is hard to add it later.
- The simpler the protocol (even if imperfect), the more deployment chance it has.
 - SSL, IPsec: mostly successful
 - Application layer: simple protocols are used successfully
 - Infrastructure protection: yet to see common deployment

Bil448, A.A.Selçuk

The Internet

4

16