The Internet

A packet-switched network:
- Data to be transmitted is divided into “packets”
- Each packet is forwarded by “routers” towards the destination

TCP/IP Reference Model

<table>
<thead>
<tr>
<th>Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Layer (HTTP, FTP, SMTP, etc.)</td>
</tr>
<tr>
<td>Transport Layer (TCP, UDP)</td>
</tr>
<tr>
<td>Network Layer (IP)</td>
</tr>
<tr>
<td>Data Link Layer (PPP, Ethernet, etc.)</td>
</tr>
<tr>
<td>Physical Layer</td>
</tr>
</tbody>
</table>

- IP: delivery of packets to the destination
- TCP: reliability of the communication
- UDP: basic transport protocol

Network Layer

- Main protocol: IP
- Like the postal service: Forwards the packet hop by hop towards the destination address, and delivers it to the destination.
- “Best effort delivery”
- Some important fields in the header:
 - source address
 - destination address
Main protocol: TCP (also UDP)
- Provides reliability on top of unreliable IP
 (~ a circuit switched network)
 - ordering of packets
 - detection & retransmission of lost / erroneous packets
 - congestion control
- Some important fields in the header:
 - source port, destination port
 - sequence number
 - checksum
Securing Internet Communication

- Encrypting / authenticating the traffic
 - SSL / TLS
 - IPsec
- Application layer security
 - E-mail (PGP, S/MIME, etc.)
 - SSH
 - ...
- Securing the infrastructure
 - DNSSEC
 - Routing security

Encrypting the Traffic

SSL:
- Runs on top of TCP
- Encrypts traffic of a TCP connection (e.g., a web page)

IPsec:
- Runs on top of IP
- Encrypts all the traffic between two IPsec hosts
- In tunnel mode, it encrypts all the traffic between two gateways (i.e., two subnets)

Securing TCP/IP

Layer 4 (SSL/TLS)
- Application L.
- Transport L.
Layer 3 (IPsec)
- Network L.
- Data Link L.
- Physical L.

Layer 3:
- can secure all IP comm., transparent to applications
- must be built into the OS
Layer 4:
- doesn’t require OS modification; deployment easy

IPsec vs. SSL

Basic TCP/IP packet:

SSL:

IPsec – transport mode:

IPsec – tunnel mode:
Securing the Internet Infrastructure

- Many critical Internet infrastructure protocols have no security protection.
- Messages are just assumed to be authentic.
- Critical examples:
 - DNS
 - Routing protocols

Domain Name System

- DNS makes it possible to use human-friendly hostnames instead of IP addresses.
- Responsible to translate hostnames to IP addresses (www.example.com → 192.0.43.10) for using it in TCP/IP.
- A critical part of the Internet infrastructure
- DNS responses are assumed to be authentic implicitly by applications and protocols.

Routing Protocols

- Responsible to compute the route between each source and destination on the Internet.
- internal: OSPF
 - Within an administrative domain (AS), every router broadcasts its link information to peers
 - Each router computes the shortest paths within AS
- external: BGP
 - Each AS shares its distance table with its neighbors
 - “Next hop” information is updated accordingly
- Routing updates are assumed authentic implicitly.

Cryptography & Internet

- Not an easy relationship
- The structure is not designed with security in mind; it is hard to add it later.
- The simpler the protocol (even if imperfect), the more deployment chance it has.
 - SSL, IPsec: mostly successful
 - Application layer: simple protocols are used successfully
 - Infrastructure protection: yet to see common deployment