IPsec Encryption & Authentication

BİL 448/548 Internet Security Protocols Ali Aydın Selçuk

Bil448, A.A.Selçuk

IPsec - ESP & AH

Uses of IPsec

- Can be used to provide user-, host-, or network-level protection (the granularity)
- · Protocol modes:
 - Transport mode: Host applies IPsec to transport layer packet
 - Tunnel mode: Gateway applies IPsec to the IP packet of a host from the network (IP in IP tunnel)
- Typical uses:
 - Remote access to network (host-to-gateway)
 - Virtual private networks (gateway-to-gateway)

Bil448, A.A.Selçuk

IPsec - ESP & AH

3

IPsec

- Cryptographic protection of the IP traffic, transparent to the user
- Main components:
 - Internet Key Exchange (IKE): IPsec key exchange protocol
 - Authentication Header (AH): Authentication of the IP packet (optional)
 - Encapsulating Security Payload (ESP):
 Encryption/authentication of the IP packet (optional)

Bil448, A.A.Selçuk

IPsec - ESP & AH

IPsec Coverage

Basic TCP/IP packet:

IP hdr TCP hdr application hdr & data

IPsec – transport mode:

IP hdr | IPsec hdr | TCP hdr | application hdr & data

IPsec - tunnel mode:

ext. IP hdr IPsec hdr IP hdr TCP hdr application hdr & data

Bil448, A.A.Selçuk

IPsec – ESP & AH

Some Basics

- Packets are authenticated/encrypted with a session key. Ideally, both parties should contribute to the session key.
- Sequence numbers are needed against packet replay attacks (different from TCP seg.no.).
- Receiver of a packet compares its sea.no. against previous packets in a "sliding window".
- Session key is reset before seg.no. wraps around.

Bil448, A.A.Selçuk

IPsec - ESP & AH

Security Association & Policy

· Security Policy Database

Specifies what kind of protection should be applied to packets (according to source-destination addresses, port numbers, etc.)

- "Security Association" (SA)
 - An IPsec-protected connection
 - Identified by
 - "security parameter index" (SPI)
 - · destination IP address
 - protocol identifier (AH or ESP)
 - Specifies the encryption/auth. algorithm, key, etc.

Bil448, A.A.Selçuk

IPsec - FSP & AH

SA Database

Contains the relevant information for each SA:

- AH information (auth. algorithm, key, key lifetime, etc.)
- ESP information (auth./encryption algorithm, key, key lifetime, etc.)
- Sequence number counter
- Anti-replay window (at the destination SA)
- Lifetime of the SA
- Others (protocol mode, path MTU, etc.)

Bil448, A.A.Selçuk

IPsec - ESP & AH

IPsec Packet Processing

Outbound packets:

- The proper SA is chosen from the security policy database
- From the SA database, the SPI and SA parameters are retrieved
- The IPsec protection is performed; packet passed to

Inbound packets:

- By the SPI, the SA is found
- IPsec auth./decryption is performed
- Packet passed to upper layer protocol

Bil448, A.A.Selçuk

IPsec - ESP & AH

Encapsulating Security Payload (ESP)

- · Encryption: usually a block cipher in CBC mode
- IV is typically included in the payload (not encrypted)

Bil448, A.A. Selçuk IPsec – ESP & AH

Authentication Header (AH)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Next Header	Payload Len	RESERVED	
Security Parameters Index (SPI)			
Sequence Number Field			
Authentication Data (variable)			

- Auth. alg.: HMAC (with MD5, SHA1, etc.) CBC-MAC (3DES, RC5, AES, etc.)
- Authentication covers immutable fields of IP header as well as the payload.

11

Bil448, A.A.Selçuk IPsec – ESP & AH

ESP with IPv4

IPv4 Header

10

Mutable fields (according to AH): ToS, flags, frag.offset, TTL, checksum

Bil448, A.A.Selçuk IPsec – ESP & AH 12

AH with IPv4

BEFORE APPLYING AH

AFTER APPLYING AH

Bil448, A.A. Selçuk IPsec – ESP & AH 13

AH Controversies

- Authentication is provided by ESP as well (hence, AH is useless)
- · Protecting immutable fields doesn't add much
- Destination address may be mutable! (due to NAT)
- Not efficient to compute (MAC at the beginning)