IPsec
Encryption & Authentication

BIL 448/548
Internet Security Protocols
Ali Aydin Selçuk

IPsec
• Cryptographic protection of the IP traffic, transparent to the user
• Main components:
 – Internet Key Exchange (IKE): IPsec key exchange protocol
 – Authentication Header (AH): Authentication of the IP packet (optional)
 – Encapsulating Security Payload (ESP): Encryption/authentication of the IP packet (optional)

Uses of IPsec
• Can be used to provide user-, host-, or network-level protection (the granularity)
• Protocol modes:
 – Transport mode: Host applies IPsec to transport layer packet
 – Tunnel mode: Gateway applies IPsec to the IP packet of a host from the network (IP in IP tunnel)
• Typical uses:
 – Remote access to network (host-to-gateway)
 – Virtual private networks (gateway-to-gateway)

IPsec Coverage
Basic TCP/IP packet:

IP sec – transport mode:

IP sec – tunnel mode:
Some Basics

• Packets are authenticated/encrypted with a session key. Ideally, both parties should contribute to the session key.

• Sequence numbers are needed against packet replay attacks (different from TCP seq.no.).

• Receiver of a packet compares its seq.no. against previous packets in a “sliding window”.

• Session key is reset before seq.no. wraps around.

Security Association & Policy

• Security Policy Database
 Specifies what kind of protection should be applied to packets (according to source-destination addresses, port numbers, etc.)

• “Security Association” (SA)
 – An IPsec-protected connection
 – Identified by
 • “security parameter index” (SPI)
 • destination IP address
 • protocol identifier (AH or ESP)
 – Specifies the encryption/auth. algorithm, key, etc.

SA Database

Contains the relevant information for each SA:
 – AH information (auth. algorithm, key, key lifetime, etc.)
 – ESP information (auth./encryption algorithm, key, key lifetime, etc.)
 – Sequence number counter
 – Anti-replay window (at the destination SA)
 – Lifetime of the SA
 – Others (protocol mode, path MTU, etc.)

IPsec Packet Processing

Outbound packets:
 – The proper SA is chosen from the security policy database
 – From the SA database, the SPI and SA parameters are retrieved
 – The IPsec protection is performed; packet passed to IP

Inbound packets:
 – By the SPI, the SA is found
 – IPsec auth./decryption is performed
 – Packet passed to upper layer protocol
Encapsulating Security Payload (ESP)

- Encryption: usually a block cipher in CBC mode
- IV is typically included in the payload (not encrypted)

Authentication Header (AH)

- Auth. alg.: HMAC (with MD5, SHA1, etc.)
- CBC-MAC (3DES, RC5, AES, etc.)
- Authentication covers immutable fields of IP header as well as the payload

ESP with IPv4

Before applying ESP:

```
+---------------------------------------------+
| IPv4 | orig IP hdr | | | |
| [any options] | TCP | Data |
+---------------------------------------------+
```

After applying ESP:

```
+---------------------------------------------+
| IPv4 | [any options] | Hdr | TCP | Data | Trailer | Auth |
+---------------------------------------------+
```

- `<------ encrypted ------>
- `<------ authenticated ------>

IPv4 Header

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+---------------------------------------------+
| Version | IHL | Type of Service| Total Length |
+---------------------------------------------+
| Identification | Flags | Fragment Offset |
+---------------------------------------------+
| Time to Live | Protocol | Header Checksum |
+---------------------------------------------+
| Source Address | | |
+---------------------------------------------+
| Destination Address | |
+---------------------------------------------+
| Options | Padding |
+---------------------------------------------+
```

- Mutable fields (according to AH): ToS, flags, frag.offset, TTL, checksum

- Encapsulation Security Payload (ESP)
AH with IPv4

<table>
<thead>
<tr>
<th>BEFORE APPLYING AH</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AFTER APPLYING AH</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

AH Controversies

- Authentication is provided by ESP as well (hence, AH is useless)
- Protecting immutable fields doesn’t add much
- Destination address may be mutable! (due to NAT)
- Not efficient to compute (MAC at the beginning)